STEP 2012, Paper 1, Q13 - Solution (3 pages; 15/6/18)

Please note: The official 2012 "Hints and Answers" are mainly hints rather than answers, so the following sol'n hasn't been checked against anything.

Expected number of different digits
$=\sum_{r=1}^{5} r P(r$ different digits \mid only digits 1 to 5 chosen $)$
where P (r different digits|only digits 1 to 5 chosen)
$=\frac{P(\text { only digits } 1 \text { to } 5 \text { chosen \& } r \text { different digits })}{P(o n l y \text { digits } 1 \text { to } 5 \text { chosen })}$
P (only digits 1 to 5 chosen)
$=P(1$ st digit is 1 to 5$) \times P(2$ nd digit is 1 to 5$) \times \ldots$
$=\frac{5}{9} \times\left(\frac{5}{10}\right)^{4}=\frac{5}{9(16)}$
$P($ only digits 1 to 5 chosen $\&$ the same digits $)=\frac{5}{90000}$
To find the number of ways of choosing numbers, using 2 digits from 1 to 5 :
eg (a) 23233 or (b) 23333
For $(a): 5_{C_{2}}$ (number of ways of selecting pairs such as $2 \& 3$)
$\times 5_{C_{2}}$ (number of ways of placing the $2 s(e g)$)
$\times 2$ (as either 2 or 3 (eg) could be in the minority)
$=10 \times 10 \times 2=200$
For (b): $5_{C_{2}}$ (number of ways of selecting pairs such as $2 \& 3$)
$\times 5$ (number of ways of placing the $2(e g)$)
$\times 2$ (as either 2 or 3 (eg) could be in the minority)
$=10 \times 5 \times 2=100$

So P (only digits 1 to 5 chosen $\& 2$ different digits)
$=\frac{200+100}{90000}=\frac{300}{90000}$
To find the number of ways of choosing numbers, using 3 digits from 1 to 5 :
eg (a) 23444 or (b) 23344
For $(a): 5_{C_{3}}$ (no. of ways of selecting 3 numbers such as $2,3 \& 4$)
$\times 5 \times 4$ (number of ways of placing the $2 \& 3(e g)$)
$\times 3$ (as 2,3 or 4 could be in the majority)
$=10 \times 20 \times 3=600$
For (b): $5_{C_{3}}$ (no. of ways of selecting 3 numbers such as $2,3 \& 4$)
$\times 5$ (number of ways of placing the $2(e g)$)
$\times 4_{C_{2}}$ (number of ways of placing the $\left.3 s \& 4 s(e g)\right)$
$\times 3$ (as 2,3 or 4 could be in the minority)
$=10 \times 5 \times 6 \times 3=900$
So P (only digits 1 to 5 chosen \& 3 different digits)
$=\frac{600+900}{90000}=\frac{1500}{90000}$
To find the number of ways of choosing numbers, using 4 digits from 1 to 5 :
eg 23455
$5_{C_{4}}$ (no. of ways of selecting 4 numbers such as $2,3,4 \& 5$)
$\times 5 \times 4 \times 3$ (number of ways of placing the numbers)
$\times 4$ (as each of the 4 numbers could be in the majority)
$=5 \times 60 \times 4=1200$
So P(only digits 1 to 5 chosen \& 4 different digits)
$=\frac{1200}{90000}$

To find the number of ways of choosing numbers, using 5 digits from 1 to 5:
eg 23451
number of ways $=5!=120$
So P(only digits 1 to 5 chosen \& 5 different digits)
$=\frac{120}{90000}$

Thus expected number of different digits
$=\frac{1}{90000\left(\frac{5}{9(16)}\right)}((1)(5)+(2)(300)+(3)(1500)+(4)(1200)+$
(5)(120))
$=\frac{16}{10000}(1+120+900+960+120)=\frac{16(2101)}{10000}=\frac{33616}{10000}=3.3616$ as required

