STEP 2012, Paper 1, Q11 - Solution (3 pages; 15/6/18)

Please note: The official 2012 "Hints and Answers" are mainly hints rather than answers, so the following sol'n hasn't been checked against anything.
(i) If T is the tension in the string, by N2L:

A: $T=5 m g \sin \theta+\mu(5 m g) \cos \theta(1)$
B: $T=3 m g \sin \phi+\mu(3 m g) \cos \phi(2)$
$\mathrm{P}: 2 T=M g(3)$
where $\tan \theta=\frac{7}{24}$, so that $\sin \theta=\frac{7}{\sqrt{24^{2}-7^{2}}}=\frac{7}{25} \& \cos \theta=\frac{24}{25}$
and $\tan \phi=\frac{4}{3}$, so that $\sin \phi=\frac{4}{5} \& \cos \phi=\frac{3}{5}$
Then (1) \& (2) $\Rightarrow \frac{7}{5}+\frac{24 \mu}{5}=\frac{12}{5}+\frac{9 \mu}{5}$,
so that $15 \mu=5$ \& hence $\mu=\frac{1}{3}$
Also, (1) \& (3) $\Rightarrow M g=m g\left(\frac{14}{5}+\frac{16}{5}\right) \Rightarrow M=6 m$, as required.
(ii) Let $x_{A}(t), x_{B}(t) \& x_{P}(t)$ be the distances of $\mathrm{A}, \mathrm{B} \& \mathrm{P}$ from the fixed pulleys at time t.

Then $x_{P}(t)=x_{P}(0)+\frac{1}{2}\left(x_{A}(0)-x_{A}(t)+x_{B}(0)-x_{B}(t)\right)$, since for P to drop by a given distance, the lengths QP and RP must both increase by that distance, so that the total extra length of string needed is twice the distance fallen by P.
[Note that, depending on the relative masses of A and B and the angles of the slopes, the accelerations of A and B will differ, and their contributions to the extra length of string will also differ. In the H\&A, it mentions that the acceleration is not constant, but
presumably this refers to the above discussion, rather than any variation over time.]
So $\ddot{x}_{P}(t)=-\frac{1}{2}\left(\ddot{x}_{A}(t)+\ddot{x}_{B}(t)\right)$
Thus, if the accelerations of A and B up the slope are $a_{A} \& a_{B}$, and the acceleration downwards of P is a_{P}, then
$a_{P}=\frac{1}{2}\left(a_{A}+a_{B}\right)$
The tension throughout the string will still be the same (you wouldn't be expected to justify this), so that N2L now gives:
A: $T-5 m g \sin \theta-\mu(5 m g) \cos \theta=5 m a_{A}$
B: $T-3 m g \sin \phi-\mu(3 m g) \cos \phi=3 m a_{B}$
P: $9 m g-2 T=9 m a_{P}$

These give:

$$
2 T=9 m g-9 m a_{P}=10 m a_{A}+10 m g \sin \theta+\mu(10 m g) \cos \theta
$$

$\& 9 m g-9 m a_{P}=6 m a_{B}+6 m g \sin \phi+\mu(6 m g) \cos \phi$
$\Rightarrow 9 g-\frac{9}{2}\left(a_{A}+a_{B}\right)=10 a_{A}+10 g\left(\frac{7}{25}\right)+\left(\frac{1}{3}\right)(10 g)\left(\frac{24}{25}\right)$
$\& 9 g-\frac{9}{2}\left(a_{A}+a_{B}\right)=6 a_{B}+6 g\left(\frac{4}{5}\right)+\left(\frac{1}{3}\right)(6 g)\left(\frac{3}{5}\right)$
$\Rightarrow 90 g-45\left(a_{A}+a_{B}\right)=100 a_{A}+28 g+32 g$
$\& 90 g-45\left(a_{A}+a_{B}\right)=60 a_{B}+48 g+12 g$
$\Rightarrow 30 g=145 a_{A}+45 a_{B}$
$\& 30 g=45 a_{A}+105 a_{B}$
$\Rightarrow 6 g=29 a_{A}+9 a_{B}$
$\& 6 g=9 a_{A}+21 a_{B}$
$\Rightarrow a_{A}=\frac{\left|\begin{array}{cc}6 g & 9 \\ 6 g & 21\end{array}\right|}{\left|\begin{array}{cc}99 & 9 \\ 9 & 21\end{array}\right|}=\frac{6 g(12)}{3(203-27)}=\frac{24 g}{176}=\frac{3 g}{22}$
$\& a_{B}=\frac{\left|\begin{array}{cc}29 & 6 g \\ 9 & 6 g\end{array}\right|}{\left|\begin{array}{cc}29 & 9 \\ 9 & 21\end{array}\right|}=\frac{6 g(20)}{3(203-27)}=\frac{40 g}{176}=\frac{5 g}{22}$
so that $a_{P}=\frac{1}{2}\left(a_{A}+a_{B}\right)=\frac{4 g}{22}$

