STEP 2011, Paper 3, Q9 - Solution (2 pages; 12/6/18)

Taking the zero of potential energy as the horizontal through 0 , by conservation of energy:

Initial PE = Final PE + Final KE
so that $(4 m) g\left(a \cos \theta_{0}\right)+(3 m) g\left(\operatorname{acos}\left[90-\theta_{0}\right]\right)$
$=(4 m) g(a \cos \theta)+(3 m) g(\operatorname{acos}[90-\theta])+\frac{1}{2}(7 m)(a \dot{\theta})^{2}$
where $\theta=\theta_{0}$ in the initial equilibrium position.
When in equilibrium,
$T=4 m g \sin \theta_{0} \& T=3 m g \sin \left(90-\theta_{0}\right)=3 m g \cos \theta_{0}$
so that $4 \sin \theta_{0}=3 \cos \theta_{0}$
and $16 \sin ^{2} \theta_{0}=9\left(1-\sin ^{2} \theta_{0}\right)$
$\Rightarrow 25 \sin ^{2} \theta_{0}=9$
$\Rightarrow \sin \theta_{0}=\frac{3}{5}\left(\right.$ as $0<\theta_{0}<\pi$, so that $\left.\sin \theta_{0}>0\right)$
and $\cos \theta_{0}=\frac{4}{5}\left(\cos \theta_{0}>0\right.$, as $0<\theta_{0}<\frac{\pi}{2}$; since if $\theta_{0}=\frac{\pi}{2}, \mathrm{P}$
would be vertically above 0 , and equilibrium wouldn't be possible)

Then multiplying (1) by $\frac{2}{m a} \Rightarrow$
$8 g \cos \theta_{0}+6 g \sin \theta_{0}=8 g \cos \theta+6 g \sin \theta+7 a \dot{\theta}^{2}$,
so that $7 a \dot{\theta}^{2}+8 g \cos \theta+6 g \sin \theta=8 g\left(\frac{4}{5}\right)+6 g\left(\frac{3}{5}\right)=10 g$, as required.
(i) The circular motion equation for Q is:
$(4 m) a \dot{\theta}^{2}=4 m g \cos \theta-R_{Q}$
Q loses contact when $R_{Q}=0$,
so that, as (2) still applies at this moment,
$10 g-8 g \cos \beta-6 g \sin \beta=7 a \dot{\theta}^{2}=7 g \cos \beta$
$\Rightarrow 15 \cos \beta+6 \sin \beta=10$, as required.
(ii) Let the acceleration of $P \& Q$ be f

For $Q: 4 m g \sin \theta-T=4 m f$
and for $P: T-3 m g \cos \theta=3 m f$
Then, $4 \times(4)-3 \times(3) \Rightarrow 7 T-12 m g \cos \theta-12 m g \sin \theta$
$\Rightarrow T=\frac{12}{7} m g(\sin \theta+\cos \theta)$, as required .

