STEP 2011, Paper 3, Q8 – Solution (4 pages; 12/6/18)

$$u + iv = \frac{1 + i(x + iy)}{i + x + iy} = \frac{(1 - y) + ix}{x + i(1 + y)} = \frac{[(1 - y) + ix][x - i(1 + y)]}{x^2 + (1 + y)^2}$$
$$= \frac{(1 - y)x + x(1 + y) + i(x^2 - (1 - y^2))}{x^2 + (1 + y)^2}$$

Then, equating real & imaginary parts,

$$u = \frac{2x}{x^2 + (1+y)^2} \& v = \frac{x^2 + y^2 - 1}{x^2 + (1+y)^2}$$

[This method guarantees that the real and imaginary parts of w can be written down fairly quickly. If instead we write w(i + z) = 1 + iz, and then equate real and imaginary parts, we end up with some awkward simultaneous equations.]

(i) [We can easily show that, with y = 0, $u^2 + v^2 = 1$. However, we need to establish precisely what part of the circle is actually used.]

Let
$$x = \tan\left(\frac{\theta}{2}\right)$$
, so that $u = \frac{2\tan\left(\frac{\theta}{2}\right)}{\sec^2\left(\frac{\theta}{2}\right)} = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$

 $= sin\theta$

And
$$v = \frac{\tan^2\left(\frac{\theta}{2}\right) - 1}{\sec^2\left(\frac{\theta}{2}\right)} = \sin^2\left(\frac{\theta}{2}\right) - \cos^2\left(\frac{\theta}{2}\right) = -\cos\theta$$

Thus $u^2 + v^2 = 1$

With
$$-\infty < x < \infty$$
, $-\frac{\pi}{2} < \frac{\theta}{2} < \frac{\pi}{2}$ or $-\frac{\pi}{2} + \pi < \frac{\theta}{2} < \frac{\pi}{2} + \pi$ etc; ie $\theta \neq \pi, -\pi, 3\pi, -3\pi$ etc

Thus, $u = sin\theta$ takes all values in the interval [-1,1]and $v = -cos\theta$ takes all values in the interval [-1,1) and so the locus of *w* is the circle $u^2 + v^2 = 1$, excluding the point (0,1).

fmng.uk

(ii) Using the same substitution as in (i), with -1 < x < 1, $-\frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{4}$ or $-\frac{\pi}{4} + \pi < \frac{\theta}{2} < \frac{\pi}{4} + \pi$ etc

ie $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ or $-\frac{\pi}{2} + 2\pi < \theta < \frac{\pi}{2} + 2\pi$ etc

Thus, $u = sin\theta$ takes all values in the interval (-1,1)and $v = -cos\theta$ takes all values in the interval [-1,0)and so the locus of w is the part of the circle $u^2 + v^2 = 1$ below the u-axis.

(iii)
$$x = 0 \Rightarrow u = 0 \& v = \frac{y^2 - 1}{(1+y)^2} = \frac{y - 1}{y + 1}$$

Sketching *v* as a function of *y*, we get the graph shown below.

[As an alternative to applying the usual methods of curve sketching, we can write $\frac{y-1}{y+1} = 1 - \frac{2}{y+1}$, and so the graph is obtained by transforming $v = \frac{1}{y}$ as follows: translation of $\binom{-1}{0}$, followed by stretch of scale factor 2 in the *v*-direction, followed by

fmng.uk

a reflection in the y-axis, and then a translation of $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

As -1 < y < 1, v < 0, and so the locus of w is the negative imaginary axis.

(iv)
$$y = 1, -\infty < x < \infty \Rightarrow u = \frac{2x}{x^2 + 4} \& v = \frac{x^2}{x^2 + 4}$$

Let
$$x = 2tan\left(\frac{\theta}{2}\right)$$
, so that $u = \frac{4tan\left(\frac{\theta}{2}\right)}{4sec^2\left(\frac{\theta}{2}\right)} = \frac{1}{2}sin\theta$

and
$$v = \frac{4tan^2\left(\frac{\theta}{2}\right)}{4sec^2\left(\frac{\theta}{2}\right)} = sin^2\left(\frac{\theta}{2}\right)$$

As in (i), $-\infty < x < \infty \Rightarrow sin\theta$ takes all values in the interval [-1,1], so that $-\frac{1}{2} \le u \le \frac{1}{2}$

As $\frac{\theta}{2}$ can take all values except $\pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$ etc, $sin\left(\frac{\pi}{2}\right)$ can take all values except ± 1 , and hence $0 \le v < 1$

Also,
$$u = \sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = \sqrt{v}\sqrt{1-v}$$
, so that $u^2 = v(1-v)$
= $-(v^2 - v) = -\left(v - \frac{1}{2}\right)^2 + \frac{1}{4}$
and $u^2 + \left(v - \frac{1}{2}\right)^2 = \frac{1}{4}$

Thus the locus of *w* is the circle of radius $\frac{1}{2}$ with centre $(0, \frac{1}{2})$, excluding the point (0, 1).