STEP 2011, Paper 3, Q8 - Solution (4 pages; 12/6/18)
$u+i v=\frac{1+i(x+i y)}{i+x+i y}=\frac{(1-y)+i x}{x+i(1+y)}=\frac{[(1-y)+i x][x-i(1+y)]}{x^{2}+(1+y)^{2}}$
$=\frac{(1-y) x+x(1+y)+i\left(x^{2}-\left(1-y^{2}\right)\right)}{x^{2}+(1+y)^{2}}$
Then, equating real \& imaginary parts,
$u=\frac{2 x}{x^{2}+(1+y)^{2}} \& v=\frac{x^{2}+y^{2}-1}{x^{2}+(1+y)^{2}}$
[This method guarantees that the real and imaginary parts of w can be written down fairly quickly. If instead we write $w(i+z)=$ $1+i z$, and then equate real and imaginary parts, we end up with some awkward simultaneous equations.]
(i) [We can easily show that, with $y=0, u^{2}+v^{2}=1$. However, we need to establish precisely what part of the circle is actually used.]

Let $x=\tan \left(\frac{\theta}{2}\right)$, so that $u=\frac{2 \tan \left(\frac{\theta}{2}\right)}{\sec ^{2}\left(\frac{\theta}{2}\right)}=2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)$
$=\sin \theta$
And $v=\frac{\tan ^{2}\left(\frac{\theta}{2}\right)-1}{\sec ^{2}\left(\frac{\theta}{2}\right)}=\sin ^{2}\left(\frac{\theta}{2}\right)-\cos ^{2}\left(\frac{\theta}{2}\right)=-\cos \theta$
Thus $u^{2}+v^{2}=1$
With $-\infty<x<\infty,-\frac{\pi}{2}<\frac{\theta}{2}<\frac{\pi}{2}$ or $-\frac{\pi}{2}+\pi<\frac{\theta}{2}<\frac{\pi}{2}+\pi$ etc; ie $\theta \neq \pi,-\pi, 3 \pi,-3 \pi$ etc

Thus, $u=\sin \theta$ takes all values in the interval $[-1,1]$
and $v=-\cos \theta$ takes all values in the interval $[-1,1)$
and so the locus of w is the circle $u^{2}+v^{2}=1$, excluding the point $(0,1)$.
(ii) Using the same substitution as in (i), with $-1<x<1$, $-\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4}$ or $-\frac{\pi}{4}+\pi<\frac{\theta}{2}<\frac{\pi}{4}+\pi$ etc ie $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ or $-\frac{\pi}{2}+2 \pi<\theta<\frac{\pi}{2}+2 \pi$ etc

Thus, $u=\sin \theta$ takes all values in the interval $(-1,1)$ and $v=-\cos \theta$ takes all values in the interval $[-1,0)$ and so the locus of w is the part of the circle $u^{2}+v^{2}=1$ below the u-axis.
(iii) $x=0 \Rightarrow u=0 \& v=\frac{y^{2}-1}{(1+y)^{2}}=\frac{y-1}{y+1}$

Sketching v as a function of y, we get the graph shown below.
[As an alternative to applying the usual methods of curve sketching, we can write $\frac{y-1}{y+1}=1-\frac{2}{y+1}$, and so the graph is obtained by transforming $v=\frac{1}{y}$ as follows: translation of $\binom{-1}{0}$, followed by stretch of scale factor 2 in the v-direction, followed by

a reflection in the y-axis, and then a translation of $\binom{0}{1}$.]
As $-1<y<1, v<0$, and so the locus of w is the negative imaginary axis.
(iv) $y=1,-\infty<x<\infty \Rightarrow u=\frac{2 x}{x^{2}+4} \& v=\frac{x^{2}}{x^{2}+4}$

Let $x=2 \tan \left(\frac{\theta}{2}\right)$, so that $u=\frac{4 \tan \left(\frac{\theta}{2}\right)}{4 \sec ^{2}\left(\frac{\theta}{2}\right)}=\frac{1}{2} \sin \theta$
and $v=\frac{4 \tan ^{2}\left(\frac{\theta}{2}\right)}{4 \sec ^{2}\left(\frac{\theta}{2}\right)}=\sin ^{2}\left(\frac{\theta}{2}\right)$
As in (i), $-\infty<x<\infty \Rightarrow \sin \theta$ takes all values in the interval $[-1,1]$, so that $-\frac{1}{2} \leq u \leq \frac{1}{2}$
As $\frac{\theta}{2}$ can take all values except $\pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$ etc, $\sin \left(\frac{\pi}{2}\right)$ can take all values except ± 1, and hence $0 \leq v<1$
Also, $u=\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)=\sqrt{v} \sqrt{1-v}$, so that $u^{2}=v(1-v)$
$=-\left(v^{2}-v\right)=-\left(v-\frac{1}{2}\right)^{2}+\frac{1}{4}$
and $u^{2}+\left(v-\frac{1}{2}\right)^{2}=\frac{1}{4}$
Thus the locus of w is the circle of radius $\frac{1}{2}$ with centre $\left(0, \frac{1}{2}\right)$, excluding the point $(0,1)$.

