STEP 2011, Paper 3, Q6 - Solution (2 pages; 12/6/18)
To get from T to V , Parts looks promising:

$$
\int_{1 / 3}^{1 / 2} \frac{\operatorname{artanh} t}{t} d t=[\text { artanht. } \ln t]_{\frac{1}{3}}^{\frac{1}{2}}-\int_{1 / 3}^{1 / 2} \frac{\operatorname{lnt}}{1-t^{2}} d t
$$

From the formulae booklet,
$[\text { artanht. } \ln t]_{\frac{1}{3}}^{\frac{1}{2}}=\left[\frac{1}{2} \ln \left(\frac{1+t}{1-t}\right) \ln t\right]_{1 / 3}^{1 / 2} \quad($ as $|\mathrm{t}|<1)$
$=\frac{1}{2}\left\{\ln \left(\frac{\frac{3}{2}}{\frac{1}{2}}\right) \ln \left(\frac{1}{2}\right)-\ln \left(\frac{\frac{4}{3}}{\frac{2}{3}}\right) \ln \left(\frac{1}{3}\right)\right\}$
$=-1 / 2\{\ln 3 \ln 2-\ln 2 \ln 3\}=0$
So $\int_{1 / 3}^{1 / 2} \frac{\operatorname{artanht}}{t} d t=-\int_{1 / 3}^{1 / 2} \frac{\mathrm{lnt}}{1-t^{2}} d t$, and thus $T=V$

For U , we can try using the definition of $\sinh u$ as $\frac{1}{2}\left(e^{u}-e^{-u}\right)$, with a view to making the substitution $z=e^{u}$, so that the limits $\ln 2 \& \ln 3$ are converted to $2 \& 3$; a further reciprocal substitution may then lead us to V (it isn't clear what will happen to the integrand itself, but the presence of exponential and log functions between $U \& V$ is encouraging).
So $U=\int_{\ln 2}^{\ln 3} \frac{u}{e^{u}-e^{-u}} d u=\int_{\ln 2}^{\ln 3} \frac{u e^{u}}{e^{u u_{-1}}} d u$
Let $z=e^{u}$, so that $d z=e^{u} d u$
and $U=\int_{2}^{3} \frac{\operatorname{lnz}}{z^{2}-1} d z$
Then let $v=1 / z$, so that $d v=-\frac{1}{z^{2}} d z$
and $U=\int_{1 / 2}^{1 / 3} \frac{-\ln v}{\left(\frac{1}{v^{2}}-1\right)}\left(-\frac{1}{v^{2}} d v\right)$
$=\int_{1 / 2}^{1 / 3} \frac{\ln v}{1-v^{2}} d v=-\int_{1 / 3}^{1 / 2} \frac{\ln v}{1-v^{2}} d v=V$

For X, Parts could work, integrating 1 to give x (to become the u in U), and noting that $\frac{d}{d x} \ln (\operatorname{coth} x)=\frac{1}{\operatorname{coth} x} \frac{d}{d x}(\operatorname{coth} x)$, which may (if we're lucky) lead us to the sinhu; bearing in mind that the limits of $U \& X$ are only related by $u=2 x$

Thus $\frac{1}{\operatorname{coth} x} \frac{d}{d x}(\operatorname{coth} x)=\tanh x \frac{d}{d x}\left(\frac{1}{\tanh x}\right)$
$=\tanh x(-1)(\tanh x)^{-2} \operatorname{sech}^{2} x=-\frac{\cosh x}{\sinh x(\cosh x)^{2}}=-\frac{2}{\sinh (2 x)}$
So, applying Parts, $X=[x \ln (\operatorname{coth} x)]_{\frac{1}{2}}^{\frac{1}{2} \ln 3}-\int_{\frac{1}{2} \ln 2}^{\frac{1}{2} \ln 3} \frac{-2 x}{\sinh (2 x)} d x$
Now, $\operatorname{coth} x=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=\frac{e^{2 x}+1}{e^{2 x}-1}$,
so that $\operatorname{coth}\left(\frac{1}{2} \ln 3\right)=\frac{3+1}{3-1}=2 \& \operatorname{coth}\left(\frac{1}{2} \ln 2\right)=\frac{2+1}{2-1}=3$
and thus, with $u=2 x$, so that $d u=2 d x$,

$$
X=\left\{\frac{1}{2} \ln 3 \ln 2-\frac{1}{2} \ln 2 \ln 3\right\}+\int_{\ln 2}^{\ln 3} \frac{u}{2 \sinh u} d u=U
$$

Thus we have shown that $T=V, U=V \& X=U$, and so the 4 integrals are equal.

