STEP 2011, Paper 3, Q4 - Solution (2 pages; 12/6/18)

(i) The 1st term on the RHS of $\left(^{*}\right)$ is the area (1) in Fig. 1, and the 2nd term is the area (2), since if we consider strips parallel to the x-axis: they will have area $x \delta y$, and $y=f(x) \Rightarrow x=f^{-1}(y)$, giving $\int_{0}^{b} f^{-1}(y) d y$, as the strips become infinitesimally narrow.

Then, from Figs $1 \& 2$ (depending on whether $b>f(a)$ or $b<$ $f(a))$, it can be seen that $(1)+(2)>a b$, whilst $(1)+(2)=a b$ when $b=f(a)$.
(ii) $y=x^{p-1} \Rightarrow x=y^{\left(\frac{1}{p-1}\right)}$, so that $f^{-1}(y)=y^{\left(\frac{1}{p-1}\right)}$

As $f(x)=x^{p-1}$ is a continuous, increasing function (ie has positive gradient) for $p>1$, and $f(0)=0$,
$(*) \Rightarrow a b \leq \int_{0}^{a} x^{p-1} d x+\int_{0}^{b} y^{\left(\frac{1}{p-1}\right)} d y=\left[\frac{1}{p} x^{p}\right]_{0}^{a}+\left[\frac{y^{\left(\frac{1}{p-1}\right)+1}}{\left(\frac{1}{p-1}\right)+1}\right] \begin{gathered}b \\ 0\end{gathered}$
$=\frac{a^{p}}{p}+\frac{\frac{b}{}_{\frac{1+p-1}{p-1}}^{\frac{1+p-1}{p-1}}}{}$
Then, as $\frac{p-1}{1+p-1}=\frac{p-1}{p}=1-\frac{1}{p}=\frac{1}{q}, \frac{1+p-1}{p-1}=q$
and $\frac{a^{p}}{p}+\frac{b^{\frac{1+p-1}{p-1}}}{\frac{1+p-1}{p-1}}=\frac{a^{p}}{p}+\frac{b^{q}}{q}$
so that $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$, as required.
$b=f(a) \Rightarrow b=a^{p-1}$,
so that $a b=a^{p}$ and $\frac{a^{p}}{p}+\frac{b^{q}}{q}=\frac{a^{p}}{p}+\frac{a^{(p-1) q}}{q}$
$=a^{p}\left(\frac{1}{p}+\frac{a^{p q-q-p}}{q}\right)$
As $\frac{1}{p}+\frac{1}{q}=1, \frac{q+p}{p q}=1 ; q+p=p q ; p q-q-p=0$
and hence $\frac{a^{p}}{p}+\frac{b^{q}}{q}=a^{p}\left(\frac{1}{p}+\frac{1}{q}\right)=a^{p}=a b$, as required.
(iii) Let $f(x)=\sin x$

As $f(x)$ is a continuous, increasing function in the interval $\left[0, \frac{\pi}{2}\right]$ and $f(0)=0$,
$(*) \Rightarrow a b \leq \int_{0}^{a} \sin x d x+\int_{0}^{b} \arcsin y d y$
$=-\cos a+1+[y \arcsin y]_{0}^{b}-\int_{0}^{b} \frac{y}{\sqrt{1-y^{2}}} d y$ (by Parts)
$=-\cos a+1+\operatorname{barcsin} b+\frac{1}{2} \int_{0}^{b} \frac{-2 y}{\sqrt{1-y^{2}}} d y$
$=-\cos a+1+\arcsin b+\frac{1}{2}\left[\frac{\sqrt{1-y^{2}}}{1 / 2}\right] \begin{aligned} & b \\ & 0\end{aligned}$
$=-\cos a+1+\operatorname{barcsin} b+\sqrt{1-b^{2}}-1$
$=\operatorname{barcsin} b+\sqrt{1-b^{2}}-\cos a$
Then, with $b=t^{-1}$, so that $t \geq 1$, and multiplying by t :
$a \leq \arcsin \left(t^{-1}\right)+t \sqrt{1-\frac{1}{t^{2}}}-t \cos a$
so that $\arcsin \left(t^{-1}\right) \geq a+t \cos a-\sqrt{t^{2}-1}$
and setting $a=0, \arcsin \left(t^{-1}\right) \geq t-\sqrt{t^{2}-1}$, as required.

