STEP 2011, Paper 3, Q3 - Solution (3 pages; 12/6/18)
Suppose that $x^{3}-3 p x+q=a(x-\alpha)^{3}+b(x-\beta)^{3}$
[Note that $q^{2} \neq 4 p^{3}$ is the condition for the discriminant of $p t^{2}-q t+p^{2}=0$ not to be zero; ie for $\alpha \neq \beta$ (if $\alpha=\beta$, then the desired form would reduce to $(a+b)(x-\alpha)^{3}$, which wouldn't be possible, due to the presence of an x^{2} term on only one side of (1)).]

Equating coefficients:
$x^{3}: 1=a+b$
$x^{2}: 0=-3 a \alpha-3 b \beta \Rightarrow a \alpha+b \beta=0$
$x:-3 p=3 a \alpha^{2}+3 b \beta^{2} \Rightarrow p=-\left(a \alpha^{2}+b \beta^{2}\right)$
$x^{0}: q=-a \alpha^{3}-b \beta^{3}$
$\alpha \& \beta$ will be roots of $p t^{2}-q t+p^{2}=0$ if and only if $\alpha+\beta=\frac{q}{p}$ and $\alpha \beta=\frac{p^{2}}{p}=p$

From (4) \& (5), $\frac{q}{p}=\frac{-a \alpha^{3}-b \beta^{3}}{-\left(a \alpha^{2}+b \beta^{2}\right)}$
From (2), $b=1-a$, and from (3), $\beta^{3}=\left(\frac{-a \alpha}{b}\right)^{3} \& \beta^{2}=\left(\frac{-a \alpha}{b}\right)^{2}$
Substituting into (6) gives
$\frac{q}{p}=\frac{-a \alpha^{3}+\frac{a^{3} \alpha^{3}}{b^{2}}}{-\left(a \alpha^{2}+\frac{a^{2} \alpha^{2}}{b}\right)}=\frac{b^{2} \alpha-a^{2} \alpha}{b^{2}+b a}=\frac{\left[(1-a)^{2}-a^{2}\right] \alpha}{(1-a)^{2}+(1-a) a}$
$=\frac{[1-2 a] \alpha}{1-a}=\frac{(b-a) \alpha}{b}$
From (3), $\frac{\alpha}{b}=-\frac{\beta}{a}$, so the above expression becomes
$\alpha-a\left(-\frac{\beta}{a}\right)=\alpha+\beta$, as required
[The above approach of trying to simplify the fraction $\frac{q}{p}$ is slightly risky, in that we could go round in circles. The approach in the official solutions, whereby $a \& b$ are first expressed in terms of $\alpha \& \beta$, and then substituted into (4), to give p in terms of $\alpha \& \beta$, is perhaps more reliable.]

To show that $p=\alpha \beta$:
From (1) \& (3), $b=1-a \& a \alpha+b \beta=0$,
so that $a \alpha+(1-a) \beta=0$
and hence $a(\alpha-\beta)=-\beta$, giving $a=\frac{\beta}{\beta-\alpha}$
and $b=1-\frac{\beta}{\beta-\alpha}=\frac{-\alpha}{\beta-\alpha}=\frac{\alpha}{\alpha-\beta}$
Then, from (4), $p=-\left(a \alpha^{2}+b \beta^{2}\right)=-\frac{1}{\beta-\alpha}\left(\beta \alpha^{2}-\alpha \beta^{2}\right)$
$=\frac{\alpha \beta(\alpha-\beta)}{\alpha-\beta}=\alpha \beta$, as required

With $p=8 \& q=48$, the quadratic equation becomes
$8 t^{2}-48 t+64=0$
or $t^{2}-6 t+8=0$, so that $(t-4)(t-2)=0$ and $\alpha=4, \beta=2$ (or the other way round)

Then $a=\frac{2}{-2}=-1 \& b=\frac{4}{2}=2$
and $x^{3}-24 x+49=0$ can then be written as

$$
-(x-4)^{3}+2(x-2)^{3}=0
$$

so that $2=\left(\frac{x-4}{x-2}\right)^{3}$ and $\frac{x-4}{x-2}=2^{\frac{1}{3}} \lambda$, where λ is one of the cube roots of 1 ; ie $1, \omega$ or ω^{2}

Then $x-4=2^{\frac{1}{3}} \lambda(x-2)$,
and $x\left(1-2^{\frac{1}{3}} \lambda\right)=4-2\left(2^{\frac{1}{3}} \lambda\right)$,
so that $x=\frac{2\left(2-2^{\frac{1}{3}} \lambda\right)}{1-2^{\frac{1}{3}} \lambda}$
[When $p=r^{2} \& q=2 r^{3}$, the above method breaks down, as mentioned at the start.]

By the Factor theorem, $x-r$ is seen to be a factor of
$x^{3}-3 r^{2} x+2 r^{3}$
and $x^{3}-3 r^{2} x+2 r^{3}=(x-r)\left(x^{2}+r x-2 r^{2}\right)$
$=(x-r)(x+2 r)(x-r)$
so that the roots are $x=r$ (repeated) and $x=-2 r$
[The last past is rather easier than might have been expected!]

