(i) Integrating factor $=\exp \left\{\int-\left(\frac{x+2}{x+1}\right) d x\right\}=\exp \left\{-\int 1+\frac{1}{x+1} d x\right\}$ $=\exp \{-x-\ln (x+1)\}=\frac{e^{-x}}{x+1}$
[the issue of $x+1 \leq 0$ is unlikely to be important here: the IF is just a device to create an exact differential]

So, after multiplying by the IF, $\frac{d}{d x}\left(\frac{u e^{-x}}{x+1}\right)=0$
and hence $u=A(x+1) e^{x}$
(ii) If $y=z e^{-x}, \frac{d y}{d x}=e^{-x}\left(\frac{d z}{d x}-z\right)$
$\& \frac{d^{2} y}{d x^{2}}=e^{-x}\left(-\frac{d z}{d x}+z+\frac{d^{2} z}{d x^{2}}-\frac{d z}{d x}\right)$
Then the DE (*) gives
$e^{-x}\left(\frac{d^{2} z}{d x^{2}}(x+1)-2 \frac{d z}{d x}(x+1)+z(x+1)+x\left(\frac{d z}{d x}-z\right)-z\right)=0$
so that $\frac{d^{2} z}{d x^{2}}(x+1)+\frac{d z}{d x}(-x-2)=0$
ie the 1 st order DE for $\frac{d z}{d x}: \frac{d}{d x}\left(\frac{d z}{d x}\right)-\left(\frac{x+2}{x+1}\right)\left(\frac{d z}{d x}\right)=0$
From (i), $\frac{d z}{d x}=A(x+1) e^{x}$,
so that $z=A \int(x+1) e^{x} d x$
$=A\left(x e^{x}\right)-A \int e^{x} d x+A \int e^{x} d x=A x e^{x}+B$
So $y=\left(A x e^{x}+B\right) e^{-x}=A x+B e^{-x}$
(iii) The general solution is the complementary function
$A x+B e^{-x}$ from (ii) + a particular integral, which is expected to be a quadratic, since $(x+1)^{2}$ is a quadratic.

Let the PI be $a x^{2}+b x+c$ [in fact, because of the term $A x$ in the CF, we can set $b=0$]

Substituting the PI into the DE gives

$$
(x+1)(2 a)+x(2 a x+b)-\left(a x^{2}+b x+c\right)=x^{2}+2 x+1
$$

Equating coeffs of $x^{2}: 2 a-a=1$, so that $a=1$
Equating coeffs of $x: 2+b-b=2$
[It would seem that, had the RHS been $x^{2}+3 x+1$, for example, that no polynomial PI would work (you might like to experiment with a cubic, for example).]

Equating constant terms: $2-c=1$, so that $c=1$
Thus the general solution is $y=x^{2}+A x+1+B e^{-x}$

