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STEP 2011, Paper 3, Q13 - Solution (2 pages; 12/6/18)
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We want R suchthat A(R—1) > 1 & A(R) < 1,
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So, if there is a unique solution,
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The answer isn't unique if A(R) = 1 for some R
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which will be the case if € Z;ieif n divides b(k + 1)
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where N; = number of ways of choosing r black balls from b and

k — r non-black balls from n — b,
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and N, = number of ways of choosing k balls from n
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Then, as in (i), we want R suchthat B(R —1) > 1 & B(R) < 1,
sothat(b—R+1)(k—R+1)>Rn—b—k+R)
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and by the same reasoning as in (i), R = l—(b+11l)+(12c+1)

and the answer isn't unique if B(R) = 1 for some R; ie when

n+ 2 divides (b + 1)(k + 1)



