STEP 2011, Paper 3, Q12 - Solution (3 pages; 12/6/18)

[The standard results for the pgf of $X, G(t)=\sum_{k=0}^{\infty} p_{k} t^{k}$ are that $E(X)=G^{\prime}(1) \& \operatorname{Var}(X)=G^{\prime \prime}(1)+G^{\prime}(1)-\left[G^{\prime}(1)\right]^{2}$ (as can be seen by differentiating $\sum_{k=0}^{\infty} p_{k} t^{k}$ twice).]
$E(Y)=\frac{d}{d t} G(H(t))\left|t=1=G^{\prime}(H(t)) H^{\prime}(t)\right| t=1$
[Note that $G^{\prime}(H(t))$ means $\frac{d}{d \lambda} G(\lambda)$, where $\lambda=H(t)$]
Then, as $H(1)=1, E(Y)=G^{\prime}(1) H^{\prime}(1)=E(N) E\left(X_{i}\right)$
And $\left.\operatorname{Var}(Y)=\frac{d^{2}}{d t^{2}} G(H(t)) \right\rvert\,(t=1)+E(Y)-[E(Y)]^{2}$
where $\frac{d^{2}}{d t^{2}} G(H(t))=\frac{d}{d t}\left\{G^{\prime}(H(t)) H^{\prime}(t)\right\}$
$=\left\{G^{\prime \prime}(H(t)) H^{\prime}(t)\right\} H^{\prime}(t)+G^{\prime}(H(t)) H^{\prime \prime}(t)$
so that

$$
\begin{aligned}
& \left.\frac{d^{2}}{d t^{2}} G(H(t)) \right\rvert\,(t=1)=\left\{G^{\prime \prime}(H(1)) H^{\prime}(1)\right\} H^{\prime}(1)+G^{\prime}(H(1)) H^{\prime \prime} \\
& =G^{\prime \prime}(1)\left[E\left(X_{i}\right)\right]^{2}+G^{\prime}(1)\left\{\operatorname{Var}\left(X_{i}\right)-E\left(X_{i}\right)+\left[E\left(X_{i}\right)\right]^{2}\right\} \\
& =\left\{\operatorname{Var}(N)-E(N)+[E(N)]^{2}\right\}\left[E\left(X_{i}\right)\right]^{2} \\
& +E(N)\left\{\operatorname{Var}\left(X_{i}\right)-E\left(X_{i}\right)+\left[E\left(X_{i}\right)\right]^{2}\right\} \\
& \text { and } \operatorname{Var}(Y)=\left\{\operatorname{Var}(N)-E(N)+[E(N)]^{2}\right\}\left[E\left(X_{i}\right)\right]^{2} \\
& +E(N)\left\{\operatorname{Var}\left(X_{i}\right)-E\left(X_{i}\right)+\left[E\left(X_{i}\right)\right]^{2}\right\} \\
& +E(N) E\left(X_{i}\right)-\left[E(N) E\left(X_{i}\right)\right]^{2} \\
& = \\
& =\operatorname{Var}(N)\left[E\left(X_{i}\right)\right]^{2}+E(N) \operatorname{Var}\left(X_{i}\right)
\end{aligned}
$$

[This is, of course, a fairly standard result.]

For the coin, N has a Geometric distribution, and therefore (from the Formulae booklet), a pgf of $G(t)=\frac{0.5 t}{1-0.5 t}=\frac{t}{2-t}$
$Y=\sum_{i=1}^{N} X_{i}$, where $X_{i} \sim B(1,0.5)$
Thus the X_{i} have pgf $H(t)=1-0.5+0.5 t=\frac{1}{2}(1+t)$
(again from the Formulae booklet).
Then, applying the earlier results, the pgf of Y is

$$
G(H(t))=\frac{\frac{1}{2}(1+t)}{2-\frac{1}{2}(1+t)}=\frac{1+t}{4-(1+t)}=\frac{1+t}{3-t}
$$

$E(N)=\frac{1}{\left(\frac{1}{2}\right)}=2$ (from the Formulae booklet) [quicker than finding $\left.G^{\prime}(1)\right]$

$$
E(Y)=E(N) E\left(X_{i}\right)=2\left(\frac{1}{2}\right)=1
$$

$\operatorname{Var}(N)=\frac{1-\frac{1}{2}}{\left(\frac{1}{2}\right)^{2}}=2$ (again from the Formulae booklet)
$\operatorname{Var}\left(X_{i}\right)=(1)(0.5)(0.5)=1 / 4$
So $\operatorname{Var}(Y)=\operatorname{Var}(N)\left[E\left(X_{i}\right)\right]^{2}+E(N) \operatorname{Var}\left(X_{i}\right)$
$=2\left(\frac{1}{4}\right)+2\left(\frac{1}{4}\right)=1$
And $P(Y=r)=$ coefficient of t^{r} in

$$
\frac{1+t}{3-t}=\frac{1}{3}(1+t)\left(1-\frac{t}{3}\right)^{-1}=\frac{1}{3}(1+t)\left(1+\frac{t}{3}+\left(\frac{t}{3}\right)^{2}+\cdots\right)
$$

For $r=0$, coefficient of t^{r} is $\frac{1}{3}$
For $r>0$, coefficient of t^{r} is

$$
\frac{1}{3}\left\{\left(\frac{1}{3}\right)^{r}+\left(\frac{1}{3}\right)^{r-1}\right\}=\left(\frac{1}{3}\right)^{r}\left\{\frac{1}{3}+1\right\}=\frac{4}{3}\left(\frac{1}{3}\right)^{r}=\frac{4}{3^{r+1}}
$$

