STEP 2011, Paper 3, Q11 - Solution (5 pages; 12/6/18)
The fact that the strings are inextensible seems to mean that the disc rises as it rotates (it's slightly worrying that no mention of this is made in the question - the last part of the official solution does imply this though).

Fis. 2

The 3D configuration of the various points involved in the 1st part is a bit of a nightmare. Let P_{1} be the initial position of $P ; P_{2}$ its position after rotating and rising; and let A be the position of the point on the ceiling vertically above P_{1}. Then $\phi=\angle P_{2} A P_{1}$.

Also, Define $P^{\prime}{ }_{1}$ to be the point vertically above P_{1} in the horizontal plane of P_{2}. Then, from Fig. 1,
$P_{1}^{\prime} P_{2}=b \sin \phi$
and from Fig. 2, $P^{\prime}{ }_{1} P_{2}=2\left(\operatorname{asin}\left(\frac{\theta}{2}\right)\right)$,
so that $b \sin \phi=2\left(\operatorname{asin}\left(\frac{\theta}{2}\right)\right)$, as required.

Alternative method

The following is a fairly safe approach involving coordinates (ie it doesn't really involve visualising the actual 3D set-up), but it's obviously much longer.
$A=(a, 0,0) ; P_{1}=(a, 0,-b) \& P_{2}=(a \cos \theta, a \sin \theta,-B)$
(the latter being derived from Fig. 2),
where B is the new vertical distance from the disc to the ceiling. We also know that $A P_{2}=b$, as the strings are inextensible,
so that $(a-a \cos \theta)^{2}+(a \sin \theta)^{2}+B^{2}=b^{2}$
Then (referring to Fig. 1), by the Cosine rule,
$\left(P_{1} P_{2}\right)^{2}=b^{2}+b^{2}-2 b^{2} \cos \phi$
and $\left(P_{1} P_{2}\right)^{2}=(a-a \cos \theta)^{2}+(a \sin \theta)^{2}+(b-B)^{2}$
[though the presence of $b-B$ doesn't look very encouraging!]
Writing $X=(a-a \cos \theta)^{2}+(a \sin \theta)^{2}$
we then have, from (1), (2) \& (3):
$X+B^{2}=b^{2}$
$2 b^{2}(1-\cos \phi)=X+(b-B)^{2}$
Then (5) \& (6) give
$2 b^{2}(1-\cos \phi)=X+b^{2}-2 b B+B^{2}=2 b^{2}-2 b B$
and hence $b \cos \phi=B$ (7)
Then, from (5) \& (7),
$B^{2}=b^{2}-X \& B^{2}=b^{2} \cos ^{2} \phi$, so that $b^{2}-X=b^{2} \cos ^{2} \phi$, and hence $X=b^{2} \sin ^{2} \phi$ (8)

And so, from (4) \& (8), $(a-a \cos \theta)^{2}+(a \sin \theta)^{2}=b^{2} \sin ^{2} \phi$
giving $a^{2}-2 a^{2} \cos \theta+a^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta=b^{2} \sin ^{2} \phi$
$\Rightarrow 2 a^{2}(1-\cos \theta)=b^{2} \sin ^{2} \phi$
Then, as $\cos \theta=\cos ^{2}\left(\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\theta}{2}\right)=1-2 \sin ^{2}\left(\frac{\theta}{2}\right)$,
$4 a^{2} \sin ^{2}\left(\frac{\theta}{2}\right)=b^{2} \sin ^{2} \phi$
and $2 a \sin \left(\frac{\theta}{2}\right)=b \sin \phi$ (as $\theta<\pi$, so that $\sin \left(\frac{\theta}{2}\right)>0$)
as required.

2nd part

In the new position, if T is the tension in each string, resolving vertically for the forces on the disc:
$n T \cos \phi=m g$
The couple C is defined to be the net moment of forces on the disc in the (new) horizontal plane.

The perpendicular distance from the line of action of the horizontal component of T to the centre of the disc is the perpendicular distance from $P^{\prime}{ }_{1} P_{2}$ to the centre of the disc;
ie $\operatorname{acos}\left(\frac{\theta}{2}\right)$,
so that $C=(n T \sin \phi)\left(\operatorname{acos}\left(\frac{\theta}{2}\right)\right)$
Eliminating $n T$ from (9) \& (10) gives
$C=\left(\frac{m g}{\cos \phi}\right) a \sin \phi \cos \left(\frac{\theta}{2}\right)=\frac{m g a\left(\frac{2 a \sin \left(\frac{\theta}{2}\right)}{b}\right) \cos \left(\frac{\theta}{2}\right)}{\sqrt{1-\left(\frac{2 a \sin \left(\frac{\theta}{2}\right)}{b}\right)^{2}}}=\frac{m g a^{2} \sin \theta}{\sqrt{b^{2}-4 a^{2} \sin ^{2}\left(\frac{\theta}{2}\right)}}$
as required.
[The term 'couple' is a bit of a misnomer: it suggests that there are a couple of forces involved, when in fact it applies to any situation where the forces are balanced, but there is not rotational equilibrium.]

last part

As an alternative to using conservation of energy (as in the official solution), we can use the fact that
rate of change of angular momentum $=$ total moment of forces
Let $\Omega(\alpha)$ be the angular velocity, where α is the angle turned by the disc from the vertical (so that $\alpha=\theta$ when the disc is released, and $\alpha=0$ when the strings are vertical) [noting that α is a variable, whilst θ is a constant], we have
$\frac{d}{d t}(-I \Omega)=C$, where the moment of inertia I of the disc about its axis is $\frac{1}{2} m a^{2}$ (the negative sign is needed, as C acts in the direction of α decreasing), and
$-\frac{1}{2} m a^{2} \frac{d \Omega}{d \alpha} \frac{d \alpha}{d t}=\frac{m g a^{2} \sin \alpha}{f(\alpha)}$, where $f(\alpha)=\sqrt{b^{2}-4 a^{2} \sin ^{2}\left(\frac{\alpha}{2}\right)}$
Then, as $\frac{d \alpha}{d t}=\Omega,-\Omega \frac{d \Omega}{d \alpha}=\frac{2 g \sin \alpha}{f(\alpha)}$
and $-\frac{1}{2} \Omega^{2}=2 g \sin \alpha \int \frac{1}{f(\alpha)} d \alpha$
and as $\frac{d}{d \alpha}\left(b^{2}-4 a^{2} \sin ^{2}\left(\frac{\alpha}{2}\right)\right)=-4 a^{2} .2 \sin \left(\frac{\alpha}{2}\right)\left(\frac{1}{2}\right) \cos \left(\frac{\alpha}{2}\right)$
$=-2 a^{2} \sin \alpha$,
$-\frac{1}{2} \Omega^{2}=\frac{2 g}{\left(-2 a^{2}\right)}\left(-2 a^{2} \sin \alpha\right) \int \frac{1}{f(\alpha)} d \alpha=-\frac{g}{a^{2}} \frac{f(\alpha)}{\left(\frac{1}{2}\right)}+C$
so that $\frac{a^{2} \Omega^{2}}{4 g}=f(\alpha)-C$
and when $\alpha=\theta, \Omega=0$, so that $C=f(\theta)$
Then $\frac{a^{2}(\Omega(0))^{2}}{4 g}=f(0)-f(\theta)=b-f(\theta)$
The angular speed required ω is $-\Omega(0)$
and thus $\frac{a^{2} \omega^{2}}{4 g}=b-\sqrt{b^{2}-4 a^{2} \sin ^{2}\left(\frac{\theta}{2}\right)}$, as required.

