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STEP 2011, Paper 3, Q11 – Solution (5 pages; 12/6/18) 

The fact that the strings are inextensible seems to mean that the 

disc rises as it rotates (it's slightly worrying that no mention of 

this is made in the question - the last part of the official solution 

does imply this though). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 3D configuration of the various points involved in the 1st part 

is a bit of a nightmare. Let 𝑃1 be the initial position of 𝑃; 𝑃2 its 

position after rotating and rising; and let 𝐴 be the position of the 

point on the ceiling vertically above 𝑃1. Then 𝜙 = ∠𝑃2𝐴𝑃1. 

Also, Define 𝑃′1 to be the point vertically above 𝑃1 in the 

horizontal plane of 𝑃2. Then, from Fig. 1,  

𝑃′1𝑃2 = 𝑏𝑠𝑖𝑛𝜙    
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and from Fig. 2,  𝑃′1𝑃2 = 2(𝑎𝑠𝑖𝑛 (
𝜃

2
)), 

so that  𝑏𝑠𝑖𝑛𝜙 = 2(𝑎𝑠𝑖𝑛 (
𝜃

2
)), as required. 

Alternative method 

The following is a fairly safe approach involving coordinates (ie it 

doesn't really involve visualising the actual 3D set-up), but it's 

obviously much longer. 

𝐴 = (𝑎, 0,0);  𝑃1 = (𝑎, 0, −𝑏) & 𝑃2 = (𝑎𝑐𝑜𝑠𝜃, 𝑎𝑠𝑖𝑛𝜃, −𝐵)  

(the latter being derived from Fig. 2), 

where 𝐵 is the new vertical distance from the disc to the ceiling. 

We also know that  𝐴𝑃2 = 𝑏 , as the strings are inextensible,  

so that  (𝑎 − 𝑎𝑐𝑜𝑠𝜃)2 + (𝑎𝑠𝑖𝑛𝜃)2 + 𝐵2 = 𝑏2  (1) 

Then (referring to Fig. 1), by the Cosine rule, 

(𝑃1𝑃2)2 = 𝑏2 + 𝑏2 − 2𝑏2𝑐𝑜𝑠𝜙   (2) 

and (𝑃1𝑃2)2 = (𝑎 − 𝑎𝑐𝑜𝑠𝜃)2 + (𝑎𝑠𝑖𝑛𝜃)2 + (𝑏 − 𝐵)2   (3) 

[though the presence of  𝑏 − 𝐵 doesn't look very encouraging!] 

Writing 𝑋 = (𝑎 − 𝑎𝑐𝑜𝑠𝜃)2 + (𝑎𝑠𝑖𝑛𝜃)2      (4), 

we then have, from (1), (2) & (3): 

𝑋 + 𝐵2 = 𝑏2   (5) 

2𝑏2(1 − 𝑐𝑜𝑠𝜙) = 𝑋 + (𝑏 − 𝐵)2   (6) 

Then (5) & (6) give 

 2𝑏2(1 − 𝑐𝑜𝑠𝜙) = 𝑋 + 𝑏2 − 2𝑏𝐵 + 𝐵2 = 2𝑏2 − 2𝑏𝐵  

and hence  𝑏𝑐𝑜𝑠𝜙 = 𝐵  (7) 

Then, from (5) & (7), 
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𝐵2 = 𝑏2 − 𝑋  &  𝐵2 = 𝑏2𝑐𝑜𝑠2𝜙 , so that   𝑏2 − 𝑋 = 𝑏2𝑐𝑜𝑠2𝜙 , 

and hence  𝑋 = 𝑏2𝑠𝑖𝑛2𝜙  (8) 

And so, from (4) & (8), (𝑎 − 𝑎𝑐𝑜𝑠𝜃)2 + (𝑎𝑠𝑖𝑛𝜃)2 = 𝑏2𝑠𝑖𝑛2𝜙   

giving 𝑎2 − 2𝑎2𝑐𝑜𝑠𝜃 + 𝑎2𝑐𝑜𝑠2𝜃 + 𝑎2𝑠𝑖𝑛2𝜃 = 𝑏2𝑠𝑖𝑛2𝜙   

⇒ 2𝑎2(1 − 𝑐𝑜𝑠𝜃) = 𝑏2𝑠𝑖𝑛2𝜙   

Then, as 𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠2 (
𝜃

2
) − 𝑠𝑖𝑛2 (

𝜃

2
) = 1 − 2𝑠𝑖𝑛2 (

𝜃

2
), 

4𝑎2𝑠𝑖𝑛2 (
𝜃

2
) = 𝑏2𝑠𝑖𝑛2𝜙   

and  2𝑎𝑠𝑖𝑛 (
𝜃

2
) = 𝑏𝑠𝑖𝑛𝜙  (as 𝜃 < 𝜋, so that 𝑠𝑖𝑛 (

𝜃

2
) > 0) 

as required. 

 

2nd part 

In the new position, if 𝑇 is the tension in each string, resolving 

vertically for the forces on the disc: 

𝑛𝑇𝑐𝑜𝑠𝜙 = 𝑚𝑔    (9) 

The couple 𝐶 is defined to be the net moment of forces on the disc 

in the (new) horizontal plane. 

The perpendicular distance from the line of action of the 

horizontal component of 𝑇 to the centre of the disc is the 

perpendicular distance from 𝑃′1𝑃2 to the centre of the disc; 

ie 𝑎𝑐𝑜𝑠 (
𝜃

2
), 

so that  𝐶 = (𝑛𝑇𝑠𝑖𝑛𝜙)(𝑎𝑐𝑜𝑠 (
𝜃

2
))   (10) 

Eliminating 𝑛𝑇 from (9) & (10) gives 
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𝐶 = (
𝑚𝑔

𝑐𝑜𝑠𝜙
) 𝑎𝑠𝑖𝑛𝜙𝑐𝑜𝑠 (

𝜃

2
) =

𝑚𝑔𝑎(
2𝑎𝑠𝑖𝑛(

𝜃
2

)

𝑏
)𝑐𝑜𝑠(

𝜃

2
)

√1−(
2𝑎𝑠𝑖𝑛(

𝜃
2

)

𝑏
)

2
=

𝑚𝑔𝑎2𝑠𝑖𝑛𝜃

√𝑏2−4𝑎2𝑠𝑖𝑛2(
𝜃

2
)

  

as required. 

[The term 'couple' is a bit of a misnomer: it suggests that there are 

a couple of forces involved, when in fact it applies to any situation 

where the forces are balanced, but there is not rotational 

equilibrium.] 

last part 

As an alternative to using conservation of energy (as in the official 

solution),  we can use the fact that 

rate of change of angular momentum = total moment of forces 

Let Ω(α) be the angular velocity, where 𝛼 is the angle turned by 

the disc from the vertical (so that 𝛼 = 𝜃 when the disc is released, 

and 𝛼 = 0  when the strings are vertical) [noting that 𝛼 is a 

variable, whilst 𝜃 is a constant], we have 

𝑑

𝑑𝑡
(−𝐼Ω) = 𝐶,   where the moment of inertia 𝐼 of the disc about its 

axis is 
1

2
𝑚𝑎2 (the negative sign is needed, as 𝐶 acts in the 

direction of 𝛼 decreasing), and 

−
1

2
𝑚𝑎2 𝑑Ω

𝑑𝛼

𝑑𝛼

𝑑𝑡
=

𝑚𝑔𝑎2𝑠𝑖𝑛𝛼

𝑓(𝛼)
 , where 𝑓(𝛼) = √𝑏2 − 4𝑎2𝑠𝑖𝑛2 (

𝛼

2
) 

Then, as  
𝑑𝛼

𝑑𝑡
= Ω  ,   −Ω

𝑑Ω

𝑑𝛼
=

2𝑔𝑠𝑖𝑛𝛼

𝑓(𝛼)
  

and −
1

2
Ω2 = 2𝑔𝑠𝑖𝑛𝛼 ∫

1

𝑓(𝛼)
𝑑𝛼 

and as  
𝑑

𝑑𝛼
(𝑏2 − 4𝑎2𝑠𝑖𝑛2 (

𝛼

2
)) = −4𝑎2. 2𝑠𝑖𝑛 (

𝛼

2
) (

1

2
) 𝑐𝑜𝑠 (

𝛼

2
) 
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= −2𝑎2𝑠𝑖𝑛𝛼 , 

−
1

2
Ω2 =

2𝑔

(−2𝑎2)
(−2𝑎2𝑠𝑖𝑛𝛼) ∫

1

𝑓(𝛼)
𝑑𝛼 = −

𝑔

𝑎2

𝑓(𝛼)

(
1

2
)

+ 𝐶  

so that 
𝑎2Ω2

4𝑔
= 𝑓(𝛼) − 𝐶 

and when 𝛼 = 𝜃, Ω = 0, so that 𝐶 = 𝑓(𝜃) 

Then  
𝑎2(Ω(0))2

4𝑔
= 𝑓(0) − 𝑓(𝜃) = 𝑏 − 𝑓(𝜃) 

The angular speed required 𝜔 is −Ω(0) 

and thus  
𝑎2𝜔2

4𝑔
= 𝑏 − √𝑏2 − 4𝑎2𝑠𝑖𝑛2 (

𝜃

2
) , as required. 

 


