STEP 2011, Paper 3, Q10 - Solution (3 pages; 12/6/18)
Let $x_{P} \& x_{Q}$ be the displacements of $P \& Q$ (see Fig. 1).

Fis. 1

We want to find x_{P} when $a+x_{P}-x_{Q}=a$; ie when $x_{P}=x_{Q}$
Let $v_{P}=\dot{x}_{P} \& v_{Q}=\dot{x}_{Q}$ be the velocities of the particles.
By conservation of energy,

$$
\begin{equation*}
\frac{1}{2} m u^{2}=\frac{1}{2} m v_{P}^{2}+\frac{1}{2} m v_{Q}^{2}+\frac{1}{2} k\left(x_{P}-x_{Q}\right)^{2} \tag{1}
\end{equation*}
$$

where k is the stiffness of the string (the last term being the elastic PE)

Also, by conservation of momentum,

$$
\begin{equation*}
m u=m v_{P}+m v_{Q} \tag{2}
\end{equation*}
$$

And $m \ddot{x}_{P}=-k\left(x_{P}-x_{Q}\right)$, provided that $x_{P}-x_{Q}>0$

Integrating (2), ut $=x_{P}+x_{Q}+A$
and $t=0, x_{P}=0, x_{Q}=0 \Rightarrow A=0$
so that $u t=x_{P}+x_{Q}$

Then, combining (1) \& (3), and writing $\ddot{x}_{P}=\dot{v}_{P}$,
$\frac{1}{2} m u^{2}=\frac{1}{2} m v_{P}^{2}+\frac{1}{2} m v_{Q}{ }^{2}+\frac{1}{2} k\left(\frac{m \dot{v}_{P}}{k}\right)^{2}$
and so from (2), $u^{2}=v_{P}{ }^{2}+\left(u-v_{P}\right)^{2}+\frac{m}{k}\left(\dot{v}_{P}\right)^{2}$,
giving $0=2 v_{P}{ }^{2}-2 u v_{p}+\frac{m}{k}\left(\dot{v}_{P}\right)^{2}$,
and hence $\frac{d v_{p}}{d t}=\sqrt{\frac{2 k}{m}\left(u v_{p}-v_{P}{ }^{2}\right)}$
$\Rightarrow t \sqrt{\frac{2 k}{m}}=\int \frac{1}{\sqrt{u v_{p}-v_{P}^{2}}} d t$
Now, $u v_{p}-v_{P}^{2}=-\left(v_{p}-\frac{u}{2}\right)^{2}+\frac{u^{2}}{4}$
Also $k=\frac{\frac{1}{2} m a \omega^{2}}{a}$, so that $\sqrt{\frac{2 k}{m}}=\omega$,
and so (5) $\Rightarrow \omega t=\arcsin \left(\frac{v_{p}-\frac{u}{2}}{\frac{u}{2}}\right)+B$
and hence $\sin (\omega t-B)=\frac{v_{p}-\frac{u}{2}}{\frac{u}{2}}$,
giving $v_{p}=\frac{u}{2} \sin (\omega t-B)+\frac{u}{2}$
Then $t=0, v_{p}=u \Rightarrow u=\frac{u}{2} \sin (-B)+\frac{u}{2}$
$\Rightarrow-B=\frac{\pi}{2}$ and so $v_{p}=\frac{u}{2} \sin \left(\omega t+\frac{\pi}{2}\right)+\frac{u}{2}$
or $v_{p}=\frac{u}{2}(\cos (\omega t)+1)$

Integrating (6): $x_{p}=\frac{u \omega}{2} \sin (\omega t)+\frac{u}{2} t+C$
and $t=0, x_{p}=0 \Rightarrow C=0$
and so $x_{p}=\frac{u \omega}{2} \sin (\omega t)+\frac{u}{2} t$

As mentioned earlier, when the string is next of length a,
$x_{P}=x_{Q}, t=T_{1}($ say $) \Rightarrow\left(\right.$ from (4)) $u T_{1}=2 x_{P}$
Thus, from (7), $\frac{u \omega}{2} \sin \left(\omega T_{1}\right)=0$, and so $T_{1}=\frac{\pi}{\omega}$
and from (8), $x_{P}=\frac{u T_{1}}{2}=\frac{u \pi}{2 \omega}$, as required.

From (6), $v_{p}=\frac{u}{2}(\cos (\omega t)+1)$,
and so at $t=T_{1}, v_{p}=0$
Then, from (2), $v_{Q}=u$

After time T_{1}, the string is slack, and so the particles collide after a further time $\frac{a}{u}$; ie at total time $\frac{\pi}{\omega}+\frac{a}{u}$

