STEP 2011, Paper 3, Q10 – Solution (3 pages; 12/6/18)

Let $x_P \& x_Q$ be the displacements of P & Q (see Fig. 1).

We want to find x_P when $a + x_P - x_Q = a$; ie when $x_P = x_Q$ Let $v_P = \dot{x}_P \& v_Q = \dot{x}_Q$ be the velocities of the particles.

By conservation of energy,

$$\frac{1}{2}mu^2 = \frac{1}{2}mv_P^2 + \frac{1}{2}mv_Q^2 + \frac{1}{2}k(x_P - x_Q)^2, \quad (1)$$

where *k* is the stiffness of the string (the last term being the elastic PE)

Also, by conservation of momentum,

$$mu = mv_P + mv_O \quad (2)$$

And $m\ddot{x}_P = -k(x_P - x_Q)$, provided that $x_P - x_Q > 0$ (3)

Integrating (2), $ut = x_P + x_Q + A$ and $t = 0, x_P = 0, x_Q = 0 \Rightarrow A = 0$ so that $ut = x_P + x_Q$ (4)

Then, combining (1) & (3), and writing $\ddot{x}_P = \dot{v}_P$, $\frac{1}{2}mu^2 = \frac{1}{2}mv_P^2 + \frac{1}{2}mv_Q^2 + \frac{1}{2}k(\frac{mv_P}{k})^2$ and so from (2), $u^2 = v_P^2 + (u - v_P)^2 + \frac{m}{k} (\dot{v}_P)^2$, giving $0 = 2v_P^2 - 2uv_p + \frac{m}{\nu}(\dot{v}_P)^2$, and hence $\frac{dv_p}{dt} = \sqrt{\frac{2k}{m}(uv_p - v_P^2)}$ $\Rightarrow t \sqrt{\frac{2k}{m}} = \int \frac{1}{\sqrt{uv_n - v_P^2}} dt \quad (5)$ Now, $uv_p - v_P^2 = -(v_p - \frac{u}{2})^2 + \frac{u^2}{4}$ Also $k = \frac{\frac{1}{2}ma\omega^2}{a}$, so that $\sqrt{\frac{2k}{m}} = \omega$, and so (5) $\Rightarrow \omega t = \arcsin\left(\frac{v_p - \frac{u}{2}}{\underline{u}}\right) + B$ and hence $\sin(\omega t - B) = \frac{v_p - \frac{u}{2}}{\frac{u}{2}}$, giving $v_p = \frac{u}{2}\sin(\omega t - B) + \frac{u}{2}$ Then t = 0, $v_p = u \Rightarrow u = \frac{u}{2}\sin(-B) + \frac{u}{2}$

$$\Rightarrow -B = \frac{\pi}{2} \text{ and so } v_p = \frac{u}{2} \sin\left(\omega t + \frac{\pi}{2}\right) + \frac{u}{2}$$

or $v_p = \frac{u}{2} (\cos(\omega t) + 1)$ (6)

Integrating (6):
$$x_p = \frac{u\omega}{2}\sin(\omega t) + \frac{u}{2}t + C$$

and $t = 0, x_p = 0 \Rightarrow C = 0$
and so $x_p = \frac{u\omega}{2}\sin(\omega t) + \frac{u}{2}t$ (7)

As mentioned earlier, when the string is next of length *a*, $x_P = x_Q, t = T_1(say) \Rightarrow (\text{from (4)}) uT_1 = 2x_P$ (8) Thus, from (7), $\frac{u\omega}{2} \sin(\omega T_1) = 0$, and so $T_1 = \frac{\pi}{\omega}$ and from (8), $x_P = \frac{uT_1}{2} = \frac{u\pi}{2\omega}$, as required.

From (6),
$$v_p = \frac{u}{2}(\cos(\omega t) + 1)$$
,
and so at $t = T_1$, $v_p = 0$
Then, from (2), $v_Q = u$

After time T_1 , the string is slack, and so the particles collide after a further time $\frac{a}{u}$; ie at total time $\frac{\pi}{\omega} + \frac{a}{u}$