STEP 2011, Paper 2, Q9 - Solution (4 pages; 12/6/18)

[The first two parts of this question are surprisingly straightforward - especially for Paper 2. But the algebra at the end makes up for this to some extent.]

Conservation of momentum $\Rightarrow 2 m(2 u)+m(-u)=2 m v_{A}+m v_{B}$
$\Rightarrow 3 u=2 v_{A}+v_{B}$
Newton's law of impact $\Rightarrow v_{B}-v_{A}=e(2 u-(-u))=3 e u$
Then (1) $-(2) \Rightarrow 3 v_{A}=3 u-3 e u \Rightarrow v_{A}=u(1-e)$
and then $(1) \Rightarrow v_{B}=3 u-2 u(1-e)=u(1+2 e)$

Conservation of momentum \Rightarrow
$(2 m) u(1-e)+m(-u)(1+2 e) f=(2 m) w_{A}+m w_{B}$
$\Rightarrow 2 u(1-e)-u(1+2 e) f=\underset{1}{2 w_{A}}+w_{B}$

Newton's law of impact \Rightarrow
$w_{B}-w_{A}=e[u(1-e)+u(1+2 e) f]$
(3) $\Rightarrow w_{A}=u(1-e)-\frac{u}{2}(1+2 e) f-\frac{w_{B}}{2}$
(4) $\Rightarrow w_{A}=w_{B}-e u[(1-e)+(1+2 e) f]$
so that
$u(1-e)-\frac{u}{2}(1+2 e) f-\frac{w_{B}}{2}=w_{B}-e u[(1-e)+(1+2 e) f]$
and hence

$$
\begin{aligned}
& \frac{3 w_{B}}{2}=u(1-e)-\frac{u}{2}(1+2 e) f+e u[(1-e)+(1+2 e) f] \\
& \Rightarrow w_{B}=\frac{2}{3} u\{(1-e)+e(1-e)\}+\frac{2}{3} u f\left\{-\frac{1}{2}(1+2 e)+e(1+2 e)\right\} \\
& =\frac{2}{3} u\left(1-e^{2}\right)+\frac{1}{3} u f\{-(1+2 e)+2 e(1+2 e)\} \\
& =\frac{2}{3}\left(1-e^{2}\right) u+\frac{1}{3} u f\left(4 e^{2}-1\right)
\end{aligned}
$$

giving the required expression.

We need to show that $w_{B}>0$, or equivalently that $h(e, f)=2\left(1-e^{2}\right)-\left(1-4 e^{2}\right) f>0$
(i) One option is to try any obvious rearrangement

Thus $h(e, f)=e^{2}(-2+4 f)+2-f$
$=4 e^{2} f+(1-f)+\left(1-2 e^{2}\right)$
The first two terms are non-negative, but the third would be negative if eg $e=1$.
(ii) Although outside the syllabus, we could consider finding the minimum of $h(e, f)$ using partial differentiation. However, there is no guarantee that such a minimum exists: it could be the case that $h(e, f)$ attains its lowest value at a boundary point of the domain of $e \& f$ (ie where either e or f is 0 or 1).
(iii) We could explore extreme situations. Clearly the result to be proved depends on one or more of the following:

$$
e>0, f>0,1-e \geq 0,1-f \geq 0
$$

Thus we see that $h(0,0)=2, h(0,1)=1, h(1,0)=0$
\& $h(1,1)=3$
A critical point is thus $e=1, f=0$
To simplify the working, we could write $g=1-e^{2}$, and expect to use the facts that $f>0 \& g \geq 0$

Then $2\left(1-e^{2}\right)-\left(1-4 e^{2}\right) f=2 g-f+4(1-g) f$
$=2 g+3 f-4 f g$
As $1-g>0 \& 1-f \geq 0$,
we can write
$2 g+3 f-4 f g=A f(1-g)+B g(1-f)+C f+D g\left({ }^{*}\right)$
where $A+C=3, B+D=2,-A-B=-4$, with
$A, B, C \& D \geq 0$, provided that at least one of $A \& C$ is >0 (as
$f(1-g)>0 \& f>0$, but $g(1-f) \geq 0 \& g \geq 0$, and we want ${ }^{(*)}$ to be >0)

For example, $B=2, D=0, A=2 \& C=1$
so that ${ }^{*}$) becomes $2 f(1-g)+2 g(1-f)+f$, which is >0 from the discussion above
(Alternatively, $C=0, A=3, B=1 \& D=1$)

Alternatively, we can see that if $1-4 e^{2}<0$, so that $\frac{1}{4}<e^{2}$ and $\frac{1}{2}<e$, then $2\left(1-e^{2}\right) \geq 0$ and $-\left(1-4 e^{2}\right) f>0$, so that $h(e, f)>0$

If $e=\frac{1}{2}$, then $2\left(1-e^{2}\right)>0$ and $-\left(1-4 e^{2}\right) f=0$, which again gives $h(e, f)>0$

If $e<\frac{1}{2}$, let $g=1-4 e^{2}$, so that $0<g<1$
Then $h(e, f)=2+\frac{1}{2}(g-1)-g f=\frac{1}{2}(3+g-2 g f)$
$=\frac{1}{2}(g+2(1-g f)+1)$
which is >0, as $g f<1$

