
(The diagram is for an acute θ only.)
$\underline{c}=k \underline{a}-(\underline{b}-k \underline{a})$, for some real k
$=2 k \underline{a}-\underline{b}$
$=\lambda \underline{a}-\underline{b}$ (say)
Also, $\underline{a} \cdot \underline{b}=\cos \theta=\underline{a} \cdot \underline{c}=\underline{a} .(\lambda \underline{a}-\underline{b})=\lambda \underline{a} \cdot \underline{a}-\underline{a} \cdot \underline{b}$,
so that $2 \underline{a} \cdot \underline{b}=\lambda \underline{a} \cdot \underline{a}$ and $\lambda=\frac{2 \underline{a} \cdot \underline{b}}{\underline{a} \cdot \underline{a}}$

2nd part

From the 1 st part, $\underline{d}=\theta \underline{b}-\underline{c}$, where $\theta=\frac{2 \underline{b} \cdot \underline{c}}{\underline{b} \cdot \underline{b}}$
$=\theta \underline{b}-(\lambda \underline{a}-\underline{b})=(\theta+1) \underline{b}-\lambda \underline{a}$
$\Rightarrow \mu=\frac{2 \underline{b} \cdot \underline{c}}{\underline{b} \cdot \underline{b}}+1=\frac{2 \underline{b} \cdot(\lambda \underline{a}-\underline{b})}{\underline{b} \cdot \underline{b}}+1$
$=\frac{2 \lambda \underline{b} \cdot \underline{a}}{\underline{b} \cdot \underline{b}}-1=\frac{4(\underline{a} \cdot \underline{b})^{2}}{(\underline{a} \cdot \underline{a})(\underline{b} \cdot \underline{b})}-1$
3rd part

In general, points on the line through $\underline{a} \& \underline{b}$ can be expressed as $\gamma \underline{a}+(1-\gamma) \underline{b}$; thus, as \underline{d} is such a point, $\mu-\lambda=1$

4th part

$\cos A O B=\cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}| \underline{\mid \underline{ }} \mid}$
From the 2nd part, $\cos ^{2} \theta=\frac{\mu+1}{4}$
If $\lambda=-\frac{1}{2}, \mu=-\frac{1}{2}+1=\frac{1}{2}$
So $\cos ^{2} \theta=\frac{3}{8}$
As $\lambda<0, \cos \theta<0$, and so , $\cos \theta=-\sqrt{\frac{3}{8}}=-\frac{\sqrt{6}}{4}$

5th part

As $\underline{d}=\frac{1}{2} \underline{b}+\frac{1}{2} \underline{a}, \mathrm{D}$ lies midway between A and B .

