STEP 2011, Paper 2, Q5 – Solution (2 pages; 12/6/18)

(The diagram is for an acute θ only.)

 $\underline{c} = k\underline{a} - (\underline{b} - k\underline{a}) \text{, for some real } k$ $= 2k\underline{a} - \underline{b}$ $= \lambda \underline{a} - \underline{b} \text{ (say)}$ Also, $\underline{a} \cdot \underline{b} = cos\theta = \underline{a} \cdot \underline{c} = \underline{a} \cdot (\lambda \underline{a} - \underline{b}) = \lambda \underline{a} \cdot \underline{a} - \underline{a} \cdot \underline{b},$ so that $2\underline{a} \cdot \underline{b} = \lambda \underline{a} \cdot \underline{a}$ and $\lambda = \frac{2\underline{a} \cdot \underline{b}}{\underline{a} \cdot \underline{a}}$

2nd part

From the 1st part, $\underline{d} = \theta \underline{b} - \underline{c}$, where $\theta = \frac{2\underline{b}.\underline{c}}{\underline{b}.\underline{b}}$

$$= \theta \underline{b} - (\lambda \underline{a} - \underline{b}) = (\theta + 1)\underline{b} - \lambda \underline{a}$$
$$\Rightarrow \mu = \frac{2\underline{b}.\underline{c}}{\underline{b}.\underline{b}} + 1 = \frac{2\underline{b}.(\lambda \underline{a} - \underline{b})}{\underline{b}.\underline{b}} + 1$$
$$= \frac{2\lambda \underline{b}.\underline{a}}{\underline{b}.\underline{b}} - 1 = \frac{4(\underline{a}.\underline{b})^2}{(\underline{a}.\underline{a})(\underline{b}.\underline{b})} - 1$$

3rd part

In general, points on the line through $\underline{a} \& \underline{b}$ can be expressed as $\gamma \underline{a} + (1 - \gamma) \underline{b}$; thus, as \underline{d} is such a point, $\mu - \lambda = 1$

4th part

 $cosAOB = cos\theta = \frac{\underline{a}.\underline{b}}{|\underline{a}||\underline{b}|}$ From the 2nd part, $cos^2\theta = \frac{\mu+1}{4}$ If $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2} + 1 = \frac{1}{2}$ So $cos^2\theta = \frac{3}{8}$ As $\lambda < 0, cos\theta < 0$, and so $, cos\theta = -\sqrt{\frac{3}{8}} = -\frac{\sqrt{6}}{4}$

5th part

As $\underline{d} = \frac{1}{2}\underline{b} + \frac{1}{2}\underline{a}$, D lies midway between A and B.