STEP 2011, Paper 2, Q2 - Solution (4 pages; 31/5/18)

1 st 10 cubes: $1,8,27,64,125,216,343,512,729,1000$
[no marks for this, apparently!]
(i) [Note: In our search for a solution of (*), we are restricting ourselves to cases where $x+y=k$]
$k z^{3}=x^{3}+y^{3}=x^{3}+(k-x)^{3}$
$=x^{3}+k^{3}-3 k^{2} x+3 k x^{2}-x^{3}$
$=k^{3}-3 k^{2} x+3 k x^{2}$
$\Rightarrow z^{3}=k^{2}-3 k x+3 x^{2}$, as required. (1)
$\frac{4 z^{3}-k^{2}}{3}=\frac{3 k^{2}-12 k x+12 x^{2}}{3}=k^{2}-4 k x+4 x^{2}$
$=(k-2 x)^{2}$, which is a perfect square, as $k \& x$ are integers.

As $\frac{4 z^{3}-k^{2}}{3}$ is a perfect square, $4 z^{3}-k^{2} \geq 0$, so that $z^{3} \geq \frac{1}{4} k^{2}$

To show that $z^{3}<k^{2}$, from (1) we need to show that $-3 k x+3 x^{2}<0 \Leftrightarrow x(x-k)<0$

As $x>0 \& x<k$, this is true.

So $\frac{1}{4} 20^{2} \leq z^{3}<20^{2}$; ie $100 \leq z^{3}<400$
and hence z must be 5,6 or 7 (if there is to be a sol'n with $x+y=$ 20).

From (1), $z=5 \Rightarrow 125=400-60 x+3 x^{2}$
$\Rightarrow 3 x^{2}-60 x+275=0$, which doesn't appear to factorise (and in fact has a negative discriminant)
$z=6 \Rightarrow 3 x^{2}-60 x+184=0$, which again doesn't appear to factorise (although the discriminant is positive)

$$
\begin{aligned}
& z=7 \Rightarrow 3 x^{2}-60 x+57=0 \\
& \Rightarrow(3 x-57)(x-1)=0 \\
& \Rightarrow x=1, y=19
\end{aligned}
$$

Notes:

(a) With hindsight, there is more likely to be a solution for larger values of z.
(b) Alternatively, $x^{3}+y^{3}$ can be factorised as $(x+y)\left(x^{2}-x y+y^{2}\right)$, and the $x+y$ then cancels out when we set $x+y=k$ in $x^{3}+y^{3}=k z^{3}$
(c) To find the correct value of z, the official sol'n uses the fact that $\frac{4 z^{3}-k^{2}}{3}$ must be a perfect square.
(ii) [Note that we won't be setting $x+y=k$ here, as that would mean that $z^{2}=19$. So it seems that the result $\frac{1}{4} k^{2} \leq z^{3}<k^{2}$ won't be relevant here. Of course it's possible that we are expected to come up with a similar inequality, so we should be on the lookout for perfect squares. However, the only thing that definitely seems to be worthwhile is the following:]

From $x^{3}+y^{3}=19 z^{3}$ and $x+y=z^{2}$, we can eliminate y, to give $x^{3}+\left(z^{2}-x\right)^{3}=19 z^{3}$
$\Rightarrow z^{6}-3 z^{4} x+3 z^{2} x^{2}=19 z^{3}$
$\Rightarrow 3 x^{2}-3 z^{2} x+z^{4}-19 z=0$
[bearing in mind that quadratics are virtually the only type of equation that can be tackled easily]

For this to have a solution, the discriminant must be nonnegative;

$$
\text { ie } 9 z^{4}-12\left(z^{4}-19 z\right) \geq 0
$$

$\Rightarrow-3 z^{4}+12(19) z \geq 0$
$\Rightarrow z^{3}-76 \leq 0($ as $z>0)$
$\Rightarrow z=1,2,3$ or 4

When $z=4,(2) \Rightarrow 3 x^{2}-48 x+256-76=0$,
so that $x^{2}-16 x+60=0$
$\Rightarrow(x-6)(x-10)=0 \Rightarrow x=6, y=z^{2}-x=10$
(noting that $x<y$ [it's a good idea to re-read the question at this point])

When $z=3,(2) \Rightarrow 3 x^{2}-27 x+81-57=0$,
so that $x^{2}-9 x+8=0$
$\Rightarrow(x-1)(x-8)=0 \Rightarrow x=1, y=z^{2}-x=8$
(and we have found two solutions, as requested).

Note

In fact, in turns out that the examiners were expecting a similar inequality to that in (i). But the appropriate perfect square only emerges by requiring the discriminant of the quadratic in x to be a perfect square (the method the examiners used in (i)).

