STEP 2011, Paper 2, Q12 - Solution (2 pages; 12/6/18)
(i) The possibilities are:
$X Y Y+$ stop
$X Y X+$ start again
$Y Y+$ stop
$Y X Y+$ start again
So $w=p(1-p) p+p(1-p)(1-p) w+(1-p) p$
$+(1-p)(1-p)(1-p) w$
$\Rightarrow w\left\{1-p(1-p)^{2}-(1-p)^{3}\right\}=p(1-p)\{p+1\}$
$\Rightarrow w=\frac{p\left(1-p^{2}\right)}{p^{3}(-1+1)+p^{2}(2-3)+p(-1+3)+1-1}$
(as $p \neq 0$; when $p=0$, the denominator $=0$)
$=\frac{p\left(1-p^{2}\right)}{-p^{2}+2 p}$
$=\frac{1-p^{2}}{2-p}$

2nd part:

$w-\frac{1}{2}=\frac{1-p^{2}}{2-p}-\frac{1}{2}=\frac{2-2 p^{2}-2+p}{2(2-p)}=\frac{p(1-2 p)}{2(2-p)}$
So if $p<\frac{1}{2}, w>\frac{1}{2}$ \& if $p>\frac{1}{2}, w<\frac{1}{2}$

3rd part:

Consider $\frac{d w}{d p}=\frac{1}{(2-p)^{2}}\left\{(2-p)(-2 p)-\left(1-p^{2}\right)(-1)\right\}$
$=\frac{1}{(2-p)^{2}}\left\{p^{2}(2-1)-4 p+1\right\}$
$=\frac{1}{(2-p)^{2}}\left\{p^{2}-4 p+1\right\}$

The graph of $y=p^{2}-4 p+1$ crosses the p-axis at
$\frac{4 \pm \sqrt{12}}{2}=2 \pm \sqrt{3}$, and so $\frac{d w}{d p}>0$ when $0<p<2-\sqrt{3}$
Thus w increases when p decreases and is less than $2-\sqrt{3}$
(ii) When $p=\frac{2}{3}, w=\frac{1-\frac{4}{9}}{2-\frac{2}{3}}=\frac{\left(\frac{5}{9}\right)}{\left(\frac{4}{3}\right)}=\frac{5}{12}$

For the game to be fair, the expected value of Xavier's [and therefore Younis's] winnings must be zero.

So $(1-w)(1)+w(-k)=0$
and hence $k=\frac{1-w}{w}=\frac{\left(\frac{7}{12}\right)}{\left(\frac{5}{12}\right)}=\frac{7}{5}=1.4$
(iii) If $p=0$, the only possible scenario is $Y X Y+$ start again; ie the match continues indefinitely
[The Examiner's report says that this question was only attempted by around a quarter of the candidates, and that the average score was very low. You may well conclude that Probability questions are a good area to specialise in, in order to gain an advantage over other candidates.]

