STEP 2011, Paper 2, Q11 – Solution (3 pages; 12/6/18)

(i) WLOG [without loss of generality] let $|\overrightarrow{PB}| = 1$

Then
$$\overrightarrow{PB} = cos(BPO)\underline{k} + sin(BPO)\widehat{OB}$$

where \widehat{OB} is a unit vector in the direction of \overrightarrow{OB}

$$= cos(90^{\circ} - \theta)\underline{k} + sin(90^{\circ} - \theta)(cos(90^{\circ} + \theta)\underline{j} - \sin(90^{\circ} + \theta)\underline{i})$$

$$= sin\theta \underline{k} + cos\theta (-sin\theta j - cos\theta \underline{i})$$

[noting that $cos(90^{\circ} + \theta)$ is $cos\theta$ translated 90° to the left, and similarly for $sin(90^{\circ} + \theta)$]

$$= -\left(\frac{1}{\sqrt{3}}\right)^2 \underline{i} - \left(\frac{1}{\sqrt{3}}\right) \left(\frac{\sqrt{2}}{\sqrt{3}}\right) \underline{j} + \frac{\sqrt{2}}{\sqrt{3}} \underline{k}$$

[From $tan\theta = \sqrt{2}$, we can create the Pythagorean triple $1, \sqrt{2}, \sqrt{3}$]

$$= -\frac{1}{3}\underline{i} - \frac{\sqrt{2}}{3}\underline{j} + \frac{\sqrt{2}}{\sqrt{3}}\underline{k}$$

(ii) Similarly, taking $|\overrightarrow{PA}| = 1$,

$$\overrightarrow{PA} = cos(APO)\underline{k} + sin(APO)j$$

$$= cos(30^{\circ})\underline{k} + sin(30^{\circ})j$$

$$=\frac{1}{2}\underline{j}+\frac{\sqrt{3}}{2}\underline{k}$$

And taking $|\overrightarrow{PC}| = 1$,

$$\overrightarrow{PC} = cos(CPO)k + sin(CPO)\widehat{OC}$$

where \widehat{OC} is a unit vector in the direction of \overrightarrow{OC}

$$= cos(60^{\circ})\underline{k} + sin(60^{\circ})(cos\phi\underline{i} - sin\phi\underline{j})$$

$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{4}{3\sqrt{2}}\right) \underline{i} - \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{3}\right) \underline{j} + \frac{1}{2} \underline{k}$$

$$= \left(\frac{\sqrt{6}}{3}\right)\underline{i} - \left(\frac{\sqrt{3}}{6}\right)\underline{j} + \frac{1}{2}\underline{k}$$

Then the forces acting on *P* are:

$$-Wk$$

$$U\left(-\frac{1}{3}\underline{i} - \frac{\sqrt{2}}{3}\underline{j} + \frac{\sqrt{2}}{\sqrt{3}}\underline{k}\right)$$

$$T(\frac{1}{2}\underline{j} + \frac{\sqrt{3}}{2}\underline{k})$$

and
$$V(\left(\frac{\sqrt{6}}{3}\right)\underline{i} - \left(\frac{\sqrt{3}}{6}\right)\underline{j} + \frac{1}{2}\underline{k})$$

(iii) As *P* is in equilibrium, the net force on it is zero.

Resolving in the *i* direction,

$$-\frac{U}{3} + \frac{V\sqrt{6}}{3} = 0 \Rightarrow U = \sqrt{6}V$$
, as required.

Resolving in the \underline{j} direction,

$$-\frac{U\sqrt{2}}{3} + \frac{T}{2} - \frac{V\sqrt{3}}{6} = 0$$

so that
$$3T = 2U\sqrt{2} + V\sqrt{3} = V(2\sqrt{12} + \sqrt{3}) = 5\sqrt{3}V$$

Resolving in the \underline{k} direction,

$$-W + \frac{U\sqrt{2}}{\sqrt{3}} + \frac{T\sqrt{3}}{2} - \frac{V}{2} = 0$$

so that
$$-W + \frac{V\sqrt{12}}{\sqrt{3}} + \frac{5V}{2} + \frac{V}{2} = 0$$

and
$$-W + 5V = 0$$

Thus
$$V = \frac{W}{5}$$
, $U = \frac{\sqrt{6}W}{5}$, $T = \frac{5\sqrt{3}W}{15} = \frac{\sqrt{3}W}{3}$