STEP 2011, Paper 1, Q1 – Solution (2 pages; 11/6/18)

(i)
$$\frac{a}{x} + \frac{b}{y} = 1 \Rightarrow -\frac{a}{x^2} - \frac{b}{y^2} \frac{dy}{dx} = 0$$

 $b \neq 0 \Rightarrow \frac{dy}{dx} = -\left(\frac{a}{x^2}\right) \div \left(\frac{b}{y^2}\right) = -\frac{ay^2}{bx^2}$, as required
As (p,q) lies on the line and the curve,
 $ap + bq = 1$ (1) & $\frac{a}{p} + \frac{b}{q} = 1$ (2)
Equal gradients $\Rightarrow \frac{-a}{b} = -\frac{aq^2}{bp^2} \Rightarrow p^2 = q^2 \Rightarrow p = \pm q$, as required.
From (1) & (2), $p = q \Rightarrow p(a + b) = 1$ & $\frac{1}{p}(a + b) = 1$
Multiplying these results together: $(a + b)^2 = 1$
Alternatively, $p = -q \Rightarrow p(a - b) = 1$ & $\frac{1}{p}(a - b) = 1$,
giving $(a - b)^2 = 1$
(ii) $\frac{a}{x} - \frac{b}{y} = 1 \Rightarrow -\frac{a}{x^2} + \frac{b}{y^2} \frac{dy}{dx} = 0$
 $\Rightarrow \frac{dy}{dx} = \left(\frac{a}{x^2}\right) \div \left(\frac{b}{y^2}\right) = \frac{ay^2}{bx^2}$ (as $ab \neq 0 \Rightarrow b \neq 0$)
Let (n, a) be the point at which the line $ax + by = 1$ is a normal to

Let (p, q) be the point at which the line ax + by = 1 is a normal to the curve.

As
$$ab \neq 0 \Rightarrow a \neq 0$$
 also,
 $\frac{-a}{b} = -\frac{1}{\left(\frac{aq^2}{bp^2}\right)} \Rightarrow a^2q^2 = b^2p^2 \Rightarrow aq = \pm bp$

[The official sol'ns don't require $a \neq 0$ (and don't refer to the fact that $ab \neq 0$), but are implicitly relying on the fact that the normal exists (otherwise $\left(\frac{aq^2}{bp^2}\right)\left(\frac{-a}{b}\right) = -1$ is not possible). Instead they mention that $pq \neq 0$, without any justification (perhaps they

were confusing it with $ab \neq 0$!) - though neither p or q could be zero, given that (p,q) lies on $\frac{a}{x} - \frac{b}{y} = 1$]

fmng.uk

As (p, q) lies on the line and the curve,

$$ap + bq = 1$$
 (3) & $\frac{a}{p} - \frac{b}{q} = 1$ (4)

Then if aq = bp, (3) \Rightarrow ap + b $\left(\frac{bp}{a}\right) = 1 \Rightarrow p\left(a + \frac{b^2}{a}\right) = 1$

and (4) $\Rightarrow \frac{a}{p} - \frac{b}{\left(\frac{bp}{a}\right)} = 1 \Rightarrow \frac{1}{p}(a - a) = 1$, which is impossible

If instead aq = -bp,

then (3)
$$\Rightarrow$$
 ap + b $\left(\frac{-bp}{a}\right) = 1 \Rightarrow p\left(a - \frac{b^2}{a}\right) = 1$
and (4) $\Rightarrow \frac{a}{p} - \frac{b}{\left(-\frac{bp}{a}\right)} = 1 \Rightarrow \frac{1}{p}(a + a) = 1$

Multiplying these results together gives

$$\left(a - \frac{b^2}{a}\right)(2a) = 1 \Rightarrow 2a^2 - 2b^2 = 1 \Rightarrow a^2 - b^2 = \frac{1}{2},$$

as required.