STEP 2011, Paper 1, Q1 - Solution (2 pages; 11/6/18)
(i) $\frac{a}{x}+\frac{b}{y}=1 \Rightarrow-\frac{a}{x^{2}}-\frac{b}{y^{2}} \frac{d y}{d x}=0$
$b \neq 0 \Rightarrow \frac{d y}{d x}=-\left(\frac{a}{x^{2}}\right) \div\left(\frac{b}{y^{2}}\right)=-\frac{a y^{2}}{b x^{2}}$, as required
As (p, q) lies on the line and the curve,

$$
\begin{equation*}
a p+b q=1(1) \& \frac{a}{p}+\frac{b}{q}=1 \tag{2}
\end{equation*}
$$

Equal gradients $\Rightarrow \frac{-a}{b}=-\frac{a q^{2}}{b p^{2}} \Rightarrow p^{2}=q^{2} \Rightarrow p= \pm q$, as required.
From (1) \& (2), $p=q \Rightarrow p(a+b)=1 \& \frac{1}{p}(a+b)=1$
Multiplying these results together: $(a+b)^{2}=1$
Alternatively, $p=-q \Rightarrow p(a-b)=1 \& \frac{1}{p}(a-b)=1$,
giving $(a-b)^{2}=1$
(ii) $\frac{a}{x}-\frac{b}{y}=1 \Rightarrow-\frac{a}{x^{2}}+\frac{b}{y^{2}} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\left(\frac{a}{x^{2}}\right) \div\left(\frac{b}{y^{2}}\right)=\frac{a y^{2}}{b x^{2}}($ as $a b \neq 0 \Rightarrow b \neq 0)$
Let (p, q) be the point at which the line $a x+b y=1$ is a normal to the curve.

As $a b \neq 0 \Rightarrow a \neq 0$ also,
$\frac{-a}{b}=-\frac{1}{\left(\frac{a q^{2}}{b p^{2}}\right)} \Rightarrow a^{2} q^{2}=b^{2} p^{2} \Rightarrow a q= \pm b p$
[The official sol'ns don't require $a \neq 0$ (and don't refer to the fact that $a b \neq 0$), but are implicitly relying on the fact that the normal exists (otherwise $\left(\frac{a q^{2}}{b p^{2}}\right)\left(\frac{-a}{b}\right)=-1$ is not possible). Instead they mention that $p q \neq 0$, without any justification (perhaps they
were confusing it with $a b \neq 0$!) - though neither p or q could be zero, given that (p, q) lies on $\frac{a}{x}-\frac{b}{y}=1$]

As (p, q) lies on the line and the curve,
$a p+b q=1$ (3) \& $\frac{a}{p}-\frac{b}{q}=1$
Then if $a q=b p,(3) \Rightarrow \mathrm{ap}+\mathrm{b}\left(\frac{b p}{a}\right)=1 \Rightarrow \mathrm{p}\left(\mathrm{a}+\frac{b^{2}}{a}\right)=1$
and $(4) \Rightarrow \frac{a}{p}-\frac{b}{\left(\frac{b p}{a}\right)}=1 \Rightarrow \frac{1}{p}(\mathrm{a}-\mathrm{a})=1$, which is impossible
If instead $a q=-b p$,
then (3) $\Rightarrow \mathrm{ap}+\mathrm{b}\left(\frac{-b p}{a}\right)=1 \Rightarrow \mathrm{p}\left(\mathrm{a}-\frac{b^{2}}{a}\right)=1$
and (4) $\Rightarrow \frac{a}{p}-\frac{b}{\left(-\frac{b p}{a}\right)}=1 \Rightarrow \frac{1}{p}(\mathrm{a}+\mathrm{a})=1$
Multiplying these results together gives

$$
\left(a-\frac{b^{2}}{a}\right)(2 a)=1 \Rightarrow 2 a^{2}-2 b^{2}=1 \Rightarrow a^{2}-b^{2}=\frac{1}{2}
$$

as required.

