STEP 2010, Paper 3, Q9 - Solution (2 pages; 10/6/18)

As P is moving in a circular path,
$m g \sin \theta-R=\frac{m v^{2}}{a}$ (1) ,
where R is the normal reaction of the block on P and v is the tangential speed of P at angle θ

As the string is inextensible, Q has speed v at the same moment.
Applying conservation of energy at angle θ :
gain in kinetic energy = decrease in potential energy
As the particles started at rest,
gain in kinetic energy $=\frac{1}{2}(m+M) v^{2}$

At angle θ, P (and hence Q) has moved a distance of $a \theta$ So decrease in potential energy $=M g a \theta-m g a \sin \theta$ and hence $\frac{1}{2}(m+M) v^{2}=M g a \theta-m g a \sin \theta$

Then equating expressions for v^{2} from (1) \& (2) gives:
$\frac{a(m g \sin \theta-R)}{m}=\frac{M g a \theta-m g a \sin \theta}{\frac{1}{2}(m+M)}$
$\Rightarrow m g \sin \theta-R=\frac{2 m g(M \theta-m \sin \theta)}{m+M}$
$\Rightarrow R=\frac{m g}{m+M}\{(m+M) \sin \theta-2 M \theta+2 m \sin \theta\}$
$=\frac{m g}{m+M}\{(3 m+M) \sin \theta-2 M \theta\}$

As P remains in contact with the block, $R \geq 0$ for $0 \leq \theta \leq \frac{\pi}{2}$
From (3), $R \geq 0 \Rightarrow(3 m+M) \sin \theta-2 M \theta \geq 0$
$\Rightarrow 3+\frac{M}{m} \geq \frac{2 M \theta}{m \sin \theta}$ for $\theta>0$, since $\sin \theta>0$
(and $R=0$ for $\theta=0$, from (3))
Thus $\frac{M}{m}\left(\frac{2 \theta}{\sin \theta}-1\right) \leq 3$
and hence $\frac{m}{M} \geq \frac{1}{3}\left(\frac{2 \theta}{\sin \theta}-1\right)$
For small $\theta, \frac{\theta}{\sin \theta} \approx 1$, so that $\frac{1}{3}\left(\frac{2 \theta}{\sin \theta}-1\right) \approx \frac{1}{3}$
For $\theta=\frac{\pi}{2}, \frac{1}{3}(\pi-1)$
Also $\frac{\theta}{\sin \theta}$, and hence $\frac{1}{3}\left(\frac{2 \theta}{\sin \theta}-1\right)$, increases with θ
So the greatest value of $\frac{1}{3}\left(\frac{2 \theta}{\sin \theta}-1\right)$ for $0<\theta \leq \frac{\pi}{2}$
is $\frac{1}{3}(\pi-1)$
and hence, as (4) holds for $0<\theta \leq \frac{\pi}{2}, \frac{m}{M} \geq \frac{1}{3}(\pi-1)$, as required.

