STEP 2010, Paper 3, Q3 - Solution (4 pages; 10/6/18)

The two primitive 4th roots of unity are $i \&-i$
$C_{4}(x)=(x-i)(x+i)=x^{2}-i^{2}=x^{2}+1$
(i) $C_{1}(x)=x-1 ; \quad C_{2}(x)=x+1$
$C_{3}(x)=\left(x-e^{\frac{2 \pi i}{3}}\right)\left(x-e^{\frac{4 \pi i}{3}}\right)=x^{2}-\left(e^{\frac{2 \pi i}{3}}+e^{\frac{4 \pi i}{3}}\right) x+e^{\frac{6 \pi i}{3}}$
$=x^{2}-e^{\frac{3 \pi i}{3}}\left(e^{\frac{-\pi i}{3}}+e^{\frac{\pi i}{3}}\right) x+1=x^{2}-(-1)\left(2 \cos \left(\frac{\pi}{3}\right)\right) x+1$
$=x^{2}+x+1$
$C_{5}(x) \& C_{6}(x)$ can be obtained in a similar way (though this is quite time-consuming for $C_{5}(x)$)

However, as indicated in the official sol'ns, there is an alternative approach:

The roots of $x^{n}=1$ are those of $x^{n}-1=0$
Then $x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$
$\left[\right.$ Note that $\left.x^{4}+x^{3}+x^{2}+x+1=\frac{x^{5}-1}{x-1}\right]$
We need to exclude from the factorisation any linear factor (including those involving complex numbers) that appears within an earlier $C_{n}(x)$ - since any non-primitive root will be a root of $C_{m}(x)=0$ for some $m<n$.

Thus, for $x^{5}-1, x-1$ appears in $C_{1}(x)$. As far as $x^{4}+x^{3}+x^{2}+x+1$ is concerned, we should in theory confirm that it contains none of the linear factors of $C_{2}(x), C_{3}(x) \& C_{4}(x)$.

This is straightforward for the factors $x+1, x-i \& x+i$, but not so clear for $x^{2}+x+1$ [This seems to be glossed over in the official sol'ns.]

However, on the assumption that $x^{4}+x^{3}+x^{2}+x+1$
and $x^{2}+x+1$ share no common linear factors (involving complex numbers), we conclude that
$C_{5}(x)=x^{4}+x^{3}+x^{2}+x+1$
For $C_{6}(x)$ we consider $x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)$
$=(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right)$,
and all but $x^{2}-x+1$ is rejected, as appearing in an earlier $C_{n}(x)$; ie $C_{6}(x)=x^{2}-x+1$
(ii) $x^{4}+1=\left(x^{2}\right)^{2}-i^{2}=\left(x^{2}-i\right)\left(x^{2}+i\right)$
$=(x-\sqrt{i})(x+\sqrt{i})(x-\sqrt{-i})(x+\sqrt{-i})$
Now $(\pm \sqrt{i})^{8}=(\pm \sqrt{-i})^{8}=1$, whilst $(\pm \sqrt{i})^{4}=(\pm \sqrt{-i})^{4}=-1$
and other powers less than 8 will not give 1
Also, the other 8th roots of unity are ± 1 and $\pm i$, and these are not primitive.

So $n=8$
(iii) First of all, 1 isn't a primitive root of $x^{p}=1$, as $1^{1}=1$ (ie $m=1$).

And there are no other non-primitive roots y, as if $y^{p}=1$ and $y^{m}=1$, where $p=q m+r$ (the remainder $r(<m)$ being nonzero, as p is prime) and assuming that $m \neq 1$ is the smallest such integer), then
$y^{p}=y^{q m+r}=\left(y^{m}\right)^{q} y^{r}=y^{r} \neq 1$ (as m is the smallest integer, other than 1 , for which $y^{m}=1$); ie contradicting the fact that $y^{p}=1$

Thus, all the roots of $x^{p}=1$ are primitive except 1.
and as $x^{p}-1=(x-1)\left(x^{p-1}+x^{p-2}+\cdots+x+1\right)$,
it follows that $C_{p}(x)=x^{p-1}+x^{p-2}+\cdots+x+1$
(iv) First of all, $r=s$ is not possible, as otherwise $C_{q}(x)=0$ would have repeated roots. Assume then, without loss of generality, that $r<s$.

Suppose that $q>s$. Then if x is a primitive q th root of unity, $C_{q}(x)=C_{r}(x) C_{s}(x) \Rightarrow x$ is either a primitive r th root or a primitive sth root. But each of these contradicts the fact that x is a primitive qth root.

Suppose instead that $q=s$. Then $C_{r}(x) \equiv 1$, which is not possible. [The reason for this is skipped over in the official sol'ns:

Suppose that the prime factorisation of r is $p_{1} p_{2} \ldots p_{k}$. Then $x^{r}=\left(x^{p_{1}}\right)^{p_{2} \ldots p_{k}}$, and we saw in (iii) that $x^{p_{1}}=1$ has $p-1$ (complex) roots. So $x^{r}=1$ has at least one root, and hence $\left.C_{r}(x) \not \equiv 1\right]$

Finally, suppose that $q<s$. Then if x is a primitive sth root of unity, $C_{q}(x)=C_{r}(x) C_{s}(x) \Rightarrow x$ is also a primitive q th root of unity, which is a contradiction, as $q<s$.

Thus there are no possibilities for which $C_{q}(x)=C_{r}(x) C_{s}(x)$.

