STEP 2010, Paper 3, Q3 – Solution (4 pages; 10/6/18)

The two primitive 4th roots of unity are i & -i

$$C_4(x) = (x - i)(x + i) = x^2 - i^2 = x^2 + 1$$

(i)
$$C_1(x) = x - 1; \quad C_2(x) = x + 1$$

 $C_3(x) = \left(x - e^{\frac{2\pi i}{3}}\right) \left(x - e^{\frac{4\pi i}{3}}\right) = x^2 - \left(e^{\frac{2\pi i}{3}} + e^{\frac{4\pi i}{3}}\right) x + e^{\frac{6\pi i}{3}}$
 $= x^2 - e^{\frac{3\pi i}{3}} \left(e^{\frac{-\pi i}{3}} + e^{\frac{\pi i}{3}}\right) x + 1 = x^2 - (-1)(2\cos\left(\frac{\pi}{3}\right)) x + 1$
 $= x^2 + x + 1$

 $C_5(x) \& C_6(x)$ can be obtained in a similar way (though this is quite time-consuming for $C_5(x)$)

However, as indicated in the official sol'ns, there is an alternative approach:

The roots of
$$x^n = 1$$
 are those of $x^n - 1 = 0$
Then $x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$
[Note that $x^4 + x^3 + x^2 + x + 1 = \frac{x^5 - 1}{x - 1}$]

We need to exclude from the factorisation any linear factor (including those involving complex numbers) that appears within an earlier $C_n(x)$ - since any non-primitive root will be a root of $C_m(x) = 0$ for some m < n.

Thus, for $x^5 - 1$, x - 1 appears in $C_1(x)$. As far as

 $x^4 + x^3 + x^2 + x + 1$ is concerned, we should in theory confirm that it contains none of the linear factors of $C_2(x)$, $C_3(x) \& C_4(x)$.

This is straightforward for the factors x + 1, x - i & x + i, but not so clear for $x^2 + x + 1$ [This seems to be glossed over in the official sol'ns.]

However, on the assumption that $x^4 + x^3 + x^2 + x + 1$

and $x^2 + x + 1$ share no common linear factors (involving complex numbers), we conclude that

$$C_5(x) = x^4 + x^3 + x^2 + x + 1$$

For $C_6(x)$ we consider $x^6 - 1 = (x^3 - 1)(x^3 + 1)$

$$= (x-1)(x^2 + x + 1)(x + 1)(x^2 - x + 1),$$

and all but $x^2 - x + 1$ is rejected, as appearing in an earlier $C_n(x)$; ie $C_6(x) = x^2 - x + 1$

(ii)
$$x^4 + 1 = (x^2)^2 - i^2 = (x^2 - i)(x^2 + i)$$

= $(x - \sqrt{i})(x + \sqrt{i})(x - \sqrt{-i})(x + \sqrt{-i})$
Now $(\pm\sqrt{i})^8 = (\pm\sqrt{-i})^8 = 1$, whilst $(\pm\sqrt{i})^4 = (\pm\sqrt{-i})^4 = -1$

and other powers less than 8 will not give 1

Also, the other 8th roots of unity are ± 1 and $\pm i$, and these are not primitive.

So *n* = 8

(iii) First of all, 1 isn't a primitive root of $x^p = 1$, as $1^1 = 1$ (ie m = 1).

And there are no other non-primitive roots y, as if $y^p = 1$ and $y^m = 1$, where p = qm + r (the remainder r (< m) being nonzero, as p is prime) and assuming that $m \neq 1$ is the smallest such integer), then $y^p = y^{qm+r} = (y^m)^q y^r = y^r \neq 1$ (as *m* is the smallest integer, other than 1, for which $y^m = 1$); ie contradicting the fact that $y^p = 1$

Thus, all the roots of $x^p = 1$ are primitive except 1. and as $x^p - 1 = (x - 1)(x^{p-1} + x^{p-2} + \dots + x + 1)$, it follows that $C_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$

(iv) First of all, r = s is not possible, as otherwise $C_q(x) = 0$ would have repeated roots. Assume then, without loss of generality, that r < s.

Suppose that q > s. Then if x is a primitive qth root of unity, $C_q(x) = C_r(x)C_s(x) \Rightarrow x$ is either a primitive rth root or a primitive sth root. But each of these contradicts the fact that x is a primitive qth root.

Suppose instead that q = s. Then $C_r(x) \equiv 1$, which is not possible.

[The reason for this is skipped over in the official sol'ns:

Suppose that the prime factorisation of *r* is $p_1p_2 \dots p_k$. Then

 $x^r = (x^{p_1})^{p_2 \dots p_k}$, and we saw in (iii) that $x^{p_1} = 1$ has p - 1 (complex) roots. So $x^r = 1$ has at least one root, and hence $C_r(x) \neq 1$]

Finally, suppose that q < s. Then if x is a primitive *sth* root of unity, $C_q(x) = C_r(x)C_s(x) \Rightarrow x$ is also a primitive *qth* root of unity, which is a contradiction, as q < s.

Thus there are no possibilities for which $C_q(x) = C_r(x)C_s(x)$.