STEP 2010, Paper 2, Q5 – Solution (2 pages; 9/6/18)

$$cos(2\alpha) = \frac{\overrightarrow{OA}.\overrightarrow{OB}}{|\overrightarrow{OA}||\overrightarrow{OB}|} = \frac{5-1-1}{\sqrt{3}\sqrt{27}} = \frac{3}{9} = \frac{1}{3}$$

(i) Let
$$\overrightarrow{OC} = m\underline{i} + nj + p\underline{k}$$

Thus we require \overrightarrow{OC} to be inclined equally to \overrightarrow{OA} and \overrightarrow{OB}

and hence
$$\frac{\overrightarrow{OA}.\overrightarrow{OC}}{|\overrightarrow{OA}||\overrightarrow{OC}|} = \frac{\overrightarrow{OB}.\overrightarrow{OC}}{|\overrightarrow{OB}||\overrightarrow{OC}|}$$

$$\Rightarrow \frac{m+n+p}{\sqrt{3}} = \frac{5m-n-p}{\sqrt{27}}$$

$$\Rightarrow$$
 3($m + n + p$) = 5 $m - n - p$

$$\Rightarrow 2m - 4n - 4p = 0$$

$$\Rightarrow m = 2(n+p)$$
 (1)

For \overrightarrow{OC} (and hence L_1) to be the angle bisector of $\angle AOB$, we also require $\cos\alpha = \frac{\overrightarrow{OA}.\overrightarrow{OC}}{|\overrightarrow{OA}||\overrightarrow{OC}|} = \frac{m+n+p}{\sqrt{3}\sqrt{m^2+n^2+p^2}}$;

and since
$$\frac{1}{3} = \cos(2\alpha) = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1$$
,

$$\cos^2 \alpha = \frac{2}{3}$$
, so that $\frac{2}{3} = \frac{(m+n+p)^2}{3(m^2+n^2+p^2)}$

$$\Rightarrow 2(m^2 + n^2 + p^2) = m^2 + n^2 + p^2 + 2(mn + mp + np)$$

$$\Rightarrow m^2 + n^2 + p^2 = 2(mn + mp + np)$$

Then, from (1): $4(n+p)^2 + n^2 + p^2 = 2(n+p) \cdot 2(n+p) + 2np$

$$\Rightarrow n^2 + p^2 - 2np = 0$$

$$\Rightarrow (n-p)^2 = 0 \Rightarrow n = p$$

Thus a possible solution is n = p = 1, m = 4

(Any multiple of these values will also provide a suitable direction vector for L_1 .)

[Alternatively, in addition to (1), we require \overrightarrow{OC} to be in the plane

of
$$\overrightarrow{OA} \& \overrightarrow{OB}$$
, and hence $\begin{vmatrix} m & 1 & 5 \\ n & 1 & -1 \\ p & 1 & -1 \end{vmatrix} = 0$

(Interpretation 1: \overrightarrow{OA} , \overrightarrow{OB} & \overrightarrow{OC} are linearly dependent;

Interpretation 2: \overrightarrow{OC} is perpendicular to : $\overrightarrow{OA} \times \overrightarrow{OB}$;

Interpretation 3: The volume of the parallelepiped with sides \overrightarrow{OA} , \overrightarrow{OB} & \overrightarrow{OC} is zero.)

So
$$m(0) - n(-6) + p(-6) = 0$$

and hence n = p]

(ii) Let
$$\overrightarrow{OD} = u\underline{i} + v\underline{j} + w\underline{k}$$

Then
$$\frac{\overrightarrow{OA}.\overrightarrow{OD}}{|\overrightarrow{OA}||\overrightarrow{OD}|} = cos\alpha$$
, so that $\frac{u+v+w}{\sqrt{3}\sqrt{u^2+v^2+w^2}} = \sqrt{\frac{2}{3}}$, from (i)

$$\Rightarrow (u + v + w)^2 = 2(u^2 + v^2 + w^2)$$

$$\Rightarrow 2(uv + uw + vw) = u^2 + v^2 + w^2$$

The given surface is therefore a double cone [ie a cone, together with its mirror image in the vertex] with vertex 0, centred on \overrightarrow{OA} .