STEP 2010, Paper 2, Q4 - Solution (2 pages; 9/6/18)

Introduction

The first part of the question regularly involves something very obvious (though in this case, a slight modification is needed!)

Having established the initial result, $\int_{0}^{1} \frac{\ln (x+1)}{\ln \left(2+x-x^{2}\right)} d x$ is most likely to be a straightforward application of it.

In the case of definite integrals, the limits can be very revealing.
Note that $\int_{a}^{b}=-\int_{b}^{a}$
For the subsequent integrals, there is bound to be some complication. Possibilities include:
(a) Some manipulation may be needed in order to be able to apply the result.
(b) Generalising the earlier result in some way [eg if it had involved $\int \sin x \cos ^{3} x d x$, this could be generalised to $\left.\int \sin x \cos ^{n} x d x\right]$
(c) Deriving a new result by applying a similar idea.

Try observing any interesting features of the question. Does anything stand out in the case of $\int_{1 / 2}^{2} \frac{\sin x}{x\left(\sin x+\sin \left(\frac{1}{x}\right)\right)} d x$?

Solution

(i) Let $x=a-u$ [the u will then be replaced with x, to give $f(a-x)$ in the numerator], so that
$I=\int_{a}^{0} \frac{-f(a-u)}{f(a-u)+f(u)} d u=\int_{0}^{a} \frac{f(a-x)}{f(a-x)+f(x)} d x$, giving the required result.

Then $2 I=\int_{0}^{a} \frac{f(x)+f(a-x)}{f(x)+f(a-x)} d x=\int_{0}^{a} d x=a$, so that $I=\frac{a}{2}$
$I_{1}=\int_{0}^{1} \frac{\ln (x+1)}{\ln \left(2+x-x^{2}\right)} d x=\int_{0}^{1} \frac{\ln (x+1)}{\ln [(2-x)(1+x)]} d x=\int_{0}^{1} \frac{\ln (x+1)}{\ln (2-x)+\ln (1+x)} d x$
Using the previous result, a will be 1 , and $\ln (x+1)$ will be $f(x)$, making $f(a-x)=\ln ([1-x]+1)=\ln (2-x)$,
so that $I_{1}=1 / 2$
$I_{2}=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin \left(x+\frac{\pi}{4}\right)} d x=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\frac{1}{\sqrt{2}}(\sin x+\cos x)} d x=\sqrt{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\sin \left(\frac{\pi}{2}-x\right)} d x$
$=\sqrt{2}\left(\frac{\left(\frac{\pi}{2}\right)}{2}\right)=\frac{\pi \sqrt{2}}{4}$
(ii) In the case of $\int_{1 / 2}^{2} \frac{\sin x}{x\left(\sin x+\sin \left(\frac{1}{x}\right)\right)} d x$, the bottom limit isn't 0 , and there isn't an obvious substitution that produces 0 ($u=x-\frac{1}{2}$ doesn't look very promising, for example), but it may be possible to apply a similar idea to that used to produce the original result.

Let $u=1 / x$, so that $d u=-\left(1 / x^{2}\right) d x$, so that $\frac{d x}{x}=-\frac{d u}{u}$
Then $I_{3}=\int_{1 / 2}^{2} \frac{\sin x}{x\left(\sin x+\sin \left(\frac{1}{x}\right)\right)} d x=\int_{2}^{1 / 2} \frac{-\sin \left(\frac{1}{u}\right)}{u\left(\sin \left(\frac{1}{u}\right)+\sin u\right)} d u=$ $\int_{1 / 2}^{2} \frac{\sin \left(\frac{1}{x}\right)}{x\left(\sin \left(\frac{1}{x}\right)+\sin x\right)} d x$

Hence $2 I_{3}=\int_{\frac{1}{2}}^{2} \frac{\sin x+\sin \left(\frac{1}{x}\right)}{x\left(\sin x+\sin \left(\frac{1}{x}\right)\right)} d x=\int_{\frac{1}{2}}^{2} \frac{1}{x} d x=\ln 2-\ln \left(\frac{1}{2}\right)$
$=\ln 2+\ln 2=2 \ln 2$, so that $I_{3}=\ln 2$

