STEP 2010, Paper 2, Q13 – Solution (3 pages; 9/6/18)

(i) $P(success|PPQ) = [1 - P(loses\ twice\ to\ P)]P(beats\ Q)$

$$= [1 - (1 - p)^2]q = (2p - p^2)q = pq(2 - p)$$

P(success|PQQ) = qp(2-q) (reversing the roles of P & Q)

As
$$p < q, -p > -q$$
; $2 - p > 2 - q$ & hence

P(success|PPQ) > P(success|PQQ), as required

(ii) P(success|PPPQ) =
$$[1 - (1 - p)^3]q = [p^3 - 3p^2 + 3p]q$$

= $pq(p^2 - 3p + 3)$

Similarly, P(success|PPPQ) = $qp(q^2 - 3q + 3)$

And P(success|PPQQ) =
$$[1 - (1 - p)^2][1 - (1 - q)^2]$$

$$= (2p - p^2)(2q - q^2) = pq(2 - p)(2 - q)$$

When $q - p > \frac{1}{2}$, rtp (result(s) to prove):

$$p^2 - 3p + 3 > q^2 - 3q + 3$$
 (A)

and
$$p^2 - 3p + 3 > (2 - p)(2 - q)$$
 (B)

For (A), consider the graph of $f(x) = x^2 - 3x + 3$:

The *x*-coord. of the minimum is $\frac{3}{2}$ (being the same as that of $f(x) = x^2 - 3x = x(x-3)$; ie halfway between the roots; or by completing the square). So, for $p < q < 1 < \frac{3}{2}$, f(p) > f(q), as required.

[Note that we didn't use the fact that $q-p>\frac{1}{2}$; ie strategy 1 is always better than strategy 3]

For (B), we want to show that
$$p^2 - 3p + 3 - (2 - p)(2 - q) > 0$$
; ie $p^2 - p - 1 + 2q - pq > 0$ (where $q - p > \frac{1}{2}$; ie $q > \frac{1}{2} + p$)

LHS > $p^2 - p - 1 + (\frac{1}{2} + p)(2 - p)$, as $p < 2$ and hence $2 - p > 0$

So $LHS > \frac{p}{2} > 0$, as required

When $q-p<\frac{1}{2}$, we want to find examples for which $A(say)=p^2-3p+3-(2-p)(2-q)$ is (a) +ve, and (b) -ve Let $q=p+\frac{1}{2}-\delta$ (where $\delta>0$)

Then $2-q=\frac{3}{2}-p+\delta$ and $A=p^2-3p+3-(2-p)(\frac{3}{2}-p+\delta)$ $=\frac{p}{2}+\delta(p-2)=B$, say

Noting that $\delta<1/2$, in order that p<q,

consider $\delta = 1/4$, so that q = p + 1/4

Then
$$B = \frac{3p}{4} - \frac{1}{2}$$

For (a), we want
$$B > 0$$
, so that $\frac{3p}{4} - \frac{1}{2} > 0$ and $p > \frac{2}{3}$

Noting that
$$q = p + 1/4$$
, we could let $p = \frac{17}{24}$, so that $q = \frac{23}{24}$

For (b), we want
$$p < \frac{2}{3}$$
; eg $p = \frac{15}{24}$, so that $q = \frac{21}{24}$