STEP 2010, Paper 1, Q9 - Solution (3 pages; 8/6/18)
To find the distance of the centre of mass from the wall:

Method 1

$p=a \cos \alpha ; q=b \sin \alpha$, and $p+q=a \cos \alpha+b \sin \alpha$, as required

Method 2

$y=\frac{b}{\sin \alpha} ; x=\left(a-\frac{b}{\tan \alpha}\right) \cos \alpha$
so that $x+y=a \cos \alpha+b\left(\frac{1}{\sin \alpha}-\frac{\cos \alpha}{\tan \alpha}\right)$
$=a \cos \alpha+b \sin \alpha\left(\frac{1}{\sin ^{2} \alpha}-\frac{\cos \alpha}{\sin \alpha \tan \alpha}\right)$
Then $\frac{1}{\sin ^{2} \alpha}-\frac{\cos \alpha}{\sin \alpha \tan \alpha}=\frac{1}{\sin ^{2} \alpha}\left(1-\frac{\sin ^{2} \alpha \cos \alpha}{\sin \alpha \tan \alpha}\right)=\frac{1}{\sin ^{2} \alpha}(1-$ $\left.\cos ^{2} \alpha\right)=1$
giving $\quad x+y=a \cos \alpha+b \sin \alpha$

[It is tempting to take moments about C , in order to exclude W from the equations. However, it is easier to take moments about A or B, as W can easily be substituted for.]
$M(A): X(2 a \cos \alpha)-\mu X(2 a \sin \alpha)-W(a \cos \alpha+b \sin \alpha)=0$
Resolving vert: $\mu Y+X=W$
Resolving horiz: $Y=\mu X$
Subst. for W \& Y into (1):
$X(2 a \cos \alpha)-\mu X(2 a \sin \alpha)-\left(\mu^{2} X+X\right)(a \cos \alpha+b \sin \alpha)=0$
$\Rightarrow 2 \cos \alpha-2 \tan \lambda \sin \alpha-\sec ^{2} \lambda\left(\cos \alpha+\frac{b \sin \alpha}{a}\right)=0$
$\Rightarrow \cos \alpha+\frac{b \sin \alpha}{a}=2 \cos ^{2} \lambda(\cos \alpha-\tan \lambda \sin \alpha)$
$\Rightarrow \frac{b \sin \alpha}{a}=\cos \alpha\left(2 \cos ^{2} \lambda-1\right)-2 \sin \lambda \cos \lambda \sin \alpha$
$=\cos \alpha \cos 2 \lambda-\sin 2 \lambda \sin \alpha$
$=\cos (2 \lambda+\alpha)$
so that $a \cos (2 \lambda+\alpha)=b \sin \alpha$, as required

If the lamina is square, $\cos (2 \lambda+\alpha)=\sin \alpha=\cos \left(\frac{\pi}{2}-\alpha\right)$, so that (a) $2 \lambda+\alpha=\frac{\pi}{2}-\alpha$ or (possibly) (b) $\frac{\pi}{2}-\alpha+2 \pi$
(a) $\Rightarrow \lambda=\frac{1}{2}\left(\frac{\pi}{2}-2 \alpha\right)=\frac{\pi}{4}-\alpha$
(b) $\Rightarrow \lambda=\frac{1}{2}\left(\frac{\pi}{2}-2 \alpha+2 \pi\right)=\frac{\pi}{4}-\alpha+\pi=\left(\frac{\pi}{2}-\alpha\right)+\frac{3 \pi}{4}$

Assuming that $0<\lambda<\frac{\pi}{2}$ ensures that (b) does not apply, since $\frac{\pi}{2}-\alpha>0$
[In theory, there is nothing to stop $\lambda=\frac{\pi}{6}+\pi$, for example, but $0<\lambda<\frac{\pi}{2}$ is a reasonable assumption.]

