STEP 2010, Paper 1, Q5 - Solution (2 pages; 8/6/18)
(i) $(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}$

Setting $x=1$ gives $2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}$, as required.
(ii) Differentating both sides of (A) wrt x gives

$$
\begin{equation*}
n(1+x)^{n-1}=\binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2} \ldots+n\binom{n}{n} x^{n-1} \tag{B}
\end{equation*}
$$

and setting $x=1$ gives
$n 2^{n-1}=\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n}$, as required.
(iii) [With integration there is always the issue of the arbitrary constant. Two functions that differ by a constant will differentiate to give the same function, and reversing the process by integration requires the addition of the arbitrary constant.
However, we can side-step this issue by using definite integration.]
From (A), $\int_{0}^{1}(1+x)^{n} d x=\left[\frac{1}{n+1}(1+x)^{n+1}\right]_{0}^{1}=\frac{1}{n+1}\left(2^{n+1}-1\right)$,
whilst $\int_{0}^{1}\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n} d x$
$=\left[\binom{n}{0} x+\frac{1}{2}\binom{n}{1} x^{2}+\frac{1}{3}\binom{n}{2} x^{3}+\cdots+\frac{1}{n+1}\binom{n}{n} x^{n+1}\right]_{0}^{1}$
$=\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\cdots+\frac{1}{n+1}\binom{n}{n}$
and equating these two expressions gives the required result.
(iv) [The 2^{n-2} on the RHS suggests differentiating twice, though we have a coefficient of $n(n+1)$, rather than $n(n-1)$. On the LHS, n^{2} could be produced by differentiating, then multiplying by x and differentiating again.]

Starting from (B) above; ie
$n(1+x)^{n-1}=\binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2} \ldots+n\binom{n}{n} x^{n-1}$,
multiplying both sides by x gives
$n x(1+x)^{n-1}=\binom{n}{1} x+2\binom{n}{2} x^{2}+3\binom{n}{3} x^{3} \ldots+n\binom{n}{n} x^{n}$,
and differentiating both sides wrt x gives
$n(1+x)^{n-1}+n x(n-1)(1+x)^{n-2}$
$=\binom{n}{1}+2^{2}\binom{n}{2} x+3^{2}\binom{n}{3} x^{2} \ldots+n^{2}\binom{n}{n} x^{n-1}$,
and setting $x=1$ gives
$n\left(2^{n-1}\right)+n(n-1) 2^{n-2}=\binom{n}{1}+2^{2}\binom{n}{2}+3^{2}\binom{n}{3}+\cdots+n^{2}\binom{n}{n}$
and LHS $=n\left(2^{n-2}\right)(2+n-1)=n(n+1) 2^{n-2}$, as required.
[The official solutions also give an approach for (i)-(iii) based on manipulating binomial coefficients.]

