STEP 2010, Paper 1, Q1 – Solution (2 pages; 8/6/18)

Equating coeffs of $x^2: 5 = a + bc^2$ (1) of $y^2: 2 = a + b$ (2) of xy: -6 = -2a + 2bc (3) of x: 4 = 4a (4) of y: -4 = -4a (duplicates (4)) constant term: 0 = 4a + d (5) Then (4) $\Rightarrow a = 1$ (5) $\Rightarrow d = -4$ (2) $\Rightarrow b = 1$ (1) $\Rightarrow c = \pm 2$ (3) $\Rightarrow -6 = -2 + 2c \Rightarrow c = -2$ So a = 1, b = 1, c = -2 & d = -4

Suppose that

$$6x^{2} + 3y^{2} - 8xy + 8x - 8y$$
$$= A(x - y + 2)^{2} + B(-2x + y)^{2} + D$$

Then, equating coeffs as before:

$$6 = A + 4B$$
 (6)
 $3 = A + B$ (7)
 $-8 = -2A - 4B$ (8)
 $8 = 4A$ (9)
 $-8 = -4A$ (which duplicates (9))

$$0 = 4A + D$$
 (10)

Then (6) & (7) \Rightarrow 3 = 3B \Rightarrow B = 1, A = 2, which (fortunately) agrees with (8) & (9) And (10) then \Rightarrow D = -8

Thus the simultaneous eq'ns become:

$$(x - y + 2)^{2} + (-2x + y)^{2} - 4 = 9$$

& $2(x - y + 2)^{2} + (-2x + y)^{2} - 8 = 14$
giving $p + q = 13$ & $2p + q = 32$,
where $p = (x - y + 2)^{2}$ & $q = (-2x + y)^{2}$
and thus $p = 9, q = 4$,
so that $x - y + 2 = \pm 3$ & $-2x + y = \pm 2$

Hence each of the following cases leads to a solution:

(a) $x - y = 1, -2x + y = 2 \implies -x = 3 \implies x = -3, y = -4$ (b) $x - y = 1, -2x + y = -2 \implies -x = -1 \implies x = 1, y = 0$ (c) $x - y = -5, -2x + y = 2 \implies -x = -3 \implies x = 3, y = 8$ (d) $x - y = -5, -2x + y = -2 \implies -x = -7 \implies x = 7, y = 12$