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Question 1

Given that
522 4 2y* — 6ay + 4o — 4y = a(r —y + 2)? + blcx +y)? + d,

find the values of the constants a, b, ¢ and d.

We expand the right hand side, and then equate coefficients:
5% + 2% —6xy + 4o — 4y
=a(r—y+2)*+b(cx +y)?+d
= a(2® — 22y + y* + dx — 4y + 4) + b(*2® 4+ 2cay + y*) + d
= (a + bc®)z® + (2bc — 2a)xy + (a + b)y® + dax — day + 4a + d,

SO we require

a+b*=5
2bc — 2a = —6
a+b=2
4a =4
—4a = —4
4a+ d = 0.

The fourth and fifth equations both give a = 1 immediately, giving b = 1 from the third
equation. Then the second equation gives ¢ = —2 and the final equation gives d = —4.

We must also check that this solution is consistent with the first equation. We have
a+0bc*> =1+1x(—2)? =5, as required. (Why is this necessary? Well, if the second
equation had begun with 722 +- - -, then our method would still have given us a = 1, etc.,
but the coefficients for the 22 term would not have matched, so we would not have been
able to write the second equation in the same way as the first.)

We thus deduce that

5224+ 22 —6ry+4r —4dy = (x —y +2)2 + (=20 4+ y)? — 4.

Solve the simultaneous equations

52% + 2y? — 6y + 4o — 4y = 9, (1)
62° + 3y* — 8xy + 8z — Sy = 14. (2)

Spurred on by our success in the first part, we will rewrite the first equation in the
suggested form:
(z—y+2)>%+(y—22)*—4=0. (3)



We are led to wonder whether the same trick will work for the second equation, so let’s
try writing:

62 + 3y* — 8xy + 8z — 8y = a(x — y + 2)* + b(cx + y)* + d.
As before, we get equations:

a+bc®> =6
2bc — 2a = —8

(We can write these down as the right hand side is the same as before.)

This time, a = 2 from both the fourth and fifth equations, so we get b = 1 from the
third equation. The second equation gives us ¢ = —2. Finally, the sixth equation gives
us d = —8.

We must now check that our solution is consistent with the first equation, which we have
not yet used. The left hand side is a + bc? = 2 + 1 x (—2)? = 6, which works, so we can
write the second equation as

2 —y+2)°+ (y —22)* — 8 = 14.

(If we had not checked for consistency, we might have wrongly concluded that 183z% +
3y? — 8xy + 8z — 8y can also be written in the same way:.)
These two equations now look remarkably similar! In fact, let’s move the constants to the
right hand side and write them together:
(z—y+2)°+(y—22)° =13
2 —y+2)*+ (y — 2x)* = 22.

We now have two simultaneous equations which look almost linear. In fact, if we write
u=(z—y+2)? and v = (y — 2x)?, we get

u+v=13
2u+v =22

which we can easily solve to get © =9 and v = 4.

Therefore, we now have to solve the two equations

(r—y+2)°=9 (4)
(y —22)* = 4. (5)

We can take square roots, so that (4) gives x — y + 2 = £3 and (5) gives y — 2z = £2.



Thus we now have four possibilities (two from equation (4), and for each of these, two from
equation (5)), and we solve each one, checking our results back in the original equations.

2e—yxrx—y+2 =x y  LHS of (1) LHS of (2)

2 3 1 0 9 14
2 -3 7 12 9 14
-2 3 -3 4 9 14
-2 -3 3 8 9 14

Therefore we see that the four solutions are (z,y) = (1,0), (7,12), (=3, —4) and (3, 8).

An alternative is to observe that equation (2) looks almost double equation (1), so we
consider 2 x (1) — (2):
4a* + o — day = 4.

But the left hand side is simply (22 — y)?, so we get 2x — y = 42.
Substituting this into equation (3) gives us
(z—y+2)*+4—4=09,

so that x —y + 2 = £3.

Thus we have the four possibilities we found in the first approach, and we continue as
above.

Yet another alternative approach is to subtract (2) — (1) to get
2 +1y? — 2wy + 4o — 4y = 5,

so that
(z—y)* +4(z —y) =5

Writing z = 2 — y, we get the quadratic 22 + 4z — 5 = 0, which we can then factorise to
give (z 4+ 5)(z — 1) =0, so either z =1 or z = —5, which givesz —y =1 or z —y = —5.

Substituting z — y = 1 into (3) now gives
(1+2)°+ (y—22)*—4=09,

so that (y — 2x)? = 4; substituting  — y = —5, on the other hand, would lead us to
(=54+2)°+ (y—2z)* —4 =09,

and again we deduce (y — 2x)* = 4.

We have again reached the same deductions as in the first approach, so we continue from
there.



Question 2

r—a

z—b

The curve y = (
Show that

)ez, where a and b are constants, has two stationary points.

a—b<0 or a—>b>4.

We begin by differentiating using first the product rule and then the quotient rule:

dy d <x—a)ex+(x—a) )

dz ~ dz \z—b (x—b)e
_(r—b).1— (5‘3_@)~1ex (:U—a)ex
BENCEE D
), a—aE-b),

Tw—ot T -0y
_ 932—(@+b):v+(ab+a—b)e$
(z —b)? '

Now solving j—i = 0 gives 22— (a+b)x+ (ab+a—b) = 0. Since the curve has two stationary

points, this quadratic must have two distinct real roots. Therefore the discriminant must
be positive, that is
(a+b)? —4(ab+a—b) >0,

and expanding gives a® — 2ab + b* — 4a + 4b > 0, so (a — b)? — 4(a — b) > 0. Factorising
this last expression gives
(a—b)(a—b—4) >0,

so (sketching a graph to help, possibly also replacing a — b with a variable like z), we see
that we must either have a —b < 0 or a — b > 4.

(i) Show that, in the case a = 0 and b = 3, there is one stationary point on either
side of the curve’s vertical asymptote, and sketch the curve.

x
We are studying the curve y = ( T )ex.

2

We have a — b = —% < 0, so the curve has two stationary points by the first part of the
question. The x-coordinates of the stationary points are found by solving the quadratic

22— (a+b)x+ (ab+a—b) =0,

as above.

Substituting in our values for a and b, we get 2% — %ZB — % =0,50 222 —x—1 =0,
which factorises to (z — 1)(2x + 1) = 0. Thus there are stationary points at (1, 2e) and

<_%7 56_1/2)'

The vertical asymptote is at « = b, that is at = 2.

[\



Therefore, since the two stationary points are at x = 1 and x = —%, there is one stationary
point on either side of the curve’s vertical asymptote.

We note that the only time the curve crosses the z-axis is when x = a, so this is when
x = 0, and this is also the y-intercept in this case.

As ¥ — +o00, y ~ € (meaning y is approximately equal to e”; formally, we say that y is
asymptotically equal to e”), as the fraction (x — a)/(z — b) tends to 1.

We can also note where the curve is positive and negative: since e” is always positive,
y > 0 whenever both x —a > 0 and x — b > 0, or when both x —a <0 and z — b < 0, so
y < 0 when z lies between a and b and is positive or zero otherwise.

Using all of this, we can now sketch the graph of the function. The nature of the stationary
points will become clear from the graphs. In the graph, the dotted lines are the asymptotes
(x = % and y = €”) and the red line is the graph we want, with the stationary points
indicated.

(1 2e,~):.

(_%’%6_1/2)

N =

ii) Sketch the curve in the case a = 2 and b = 0.
2

9

‘r =
This time, we are studying the curve y = < 2 )e””.

T

Proceeding as in (i), we have a —b = % > 4, so again, the curve has two stationary points.
The z-coordinates of the stationary points are given by solving the quadratic

2° — (a+b)x + (ab+a —b) =0,

as above.

Substituting our values, we get z* — 2z + 2, so 22% — 9z + 9 = 0. Again, this factorises
nicely to (z — 3)(2z — 3) = 0, giving stationary points at (2, —2¢%?) and (3, —1e%).

The vertical asymptote is at x = b, that is at x = 0. This time, therefore, the stationary
points are both to the right of the vertical asymptote.

The z-intercept is at x = a, that is, at (%,0). There is no y-intercept as x = 0 is an
asymptote.

Again, as x — +o00, y ~ e”.



Asin (i), y < 0 when x lies between a and b and is positive or zero otherwise.

Using all of this, we can now sketch the graph of this function. Note that the asymptote
y = e is much greater than y until x is greater than 20 or so, as even then (x—a)/(x—b) ~
15/20, and only slowly approaches 1. We don’t even attempt to sketch the function for
such large values of z!




Question 3

Show that

sin(x 4+ y) — sin(z — y) = 2cosrsiny

and deduce that

sin A — sin B = 2cos 3(A + B) sin 5(A — B).

We use the compound angle formule (also called the addition formula) to expand the
left hand side, getting:

sin(z +y) —sin(z — y) = (sinxz cosy + cosxsiny) — (sinz cosy — cos xsiny)

= 2cosxsiny,

as required.

For the deduction, we want A =z +yand B=xz—y,sox = :(A+B) and y = :(A— B),
solving these two equations simultaneously to find x and y. Then we simply substitute
these values of x and y into our previous identity, and we reach the desired conclusion:

sin A — sin B = 2cos 3(A + B) sin 3(A — B).

(This identity is known as one of the factor formule.)

Show also that
cos A — cos B = —2sin 3(A + B) sin5(A — B).

Likewise, we have

cos(x 4+ y) — cos(z — y) = (cosx cosy — sinzsiny) — (cos x cosy + sin x sin y)

= —2sinxsiny,

so again substituting « = $(A + B) and y = 3(A — B) gives

cos A — cos B = —2sin 3(A + B) sin5(A — B).



The points P, @, R and S have coordinates (acosp,bsinp), (acosq,bsing),
(acosr,bsinr) and (acoss,bsins) respectively, where 0 < p < ¢ < r < s < 2m,
and a and b are positive.

Given that neither of the lines PQ) and SR is vertical, show that these lines are parallel
if and only if

r+s—p—q=2m.

Remark: The points P, (), R and S all lie on an ellipse, which can be thought of as a
stretched circle, as their coordinates all have T = cost) and { = sinf), so they satisfy the

equation (f)2 + (%)2 = 1.

The lines PQ and SR are parallel if and only if their gradients are equal (and neither are
vertical, so their gradients are well-defined), thus

PQ || RS bsinq — bsinp _ bsins — bsinr
aCcosSq — acosSp  acCOSS — aCOST
sing —sinp _ sins —sinr
cosq—cosp COS § — COST
2cos 5(q+p)sing(q—p)  2cosz(s+7)sing(s—r)
—2sin3(g+p)sini(¢—p) —2sini(s+r)sini(s—r)
cos 5(q + cosz(s+r
sla+p) .21( )
—sini(¢g+p) —sini(s+r)
< cot3(q+p) =cot3(s+r)
> 2(qg+p)=3%(s+r)+kr  forsomekeZ

<< q+p=s+r—+2kn for some k € Z
< r+s—p—q=2nm for some n € Z.

The last four lines could have also been replaced by the following:

PQ || RS < ---
oS %
. cosbatn) _ cosks+n)
—sini(g+p) —sini(s+r)
< cosi(qg+p)sini(s+r)=cosi(s+r)sini(q+p)
= sinl(s+r)cosl(q+p)—cos%(s—i—r)sin%(q—i—p =0
= sl 4a) = (s 40) -
— (q+p—8—r) forsomek:GZ
< r+s—p —q—2n7r for some n € Z.

We are almost there; we now only need to show n = 1 in the final line. We know that
0<p<g<r<s<2msor+s<4mand0 < p+q <r+s,sothat 0 <r+s—p—q < 4m,
which means that n must equal 1 if PQ) and RS are parallel.

Thus PQ and RS are parallel if and only if r + s — p — g = 27.



Question 4

1
Use the substitution x = 2T where t > 1, to show that, for x > 0,

/\/de_zln(\/_+\/x+ 1) +
1 1|t

[Note: You may use without proof the result / ——dt=—1In
2 — a? 2a |t

a
+ constant. |
a

Using the given substitution, we first use the chain rule to calculate

dzx

2t
=

(We could alternatively have used the quotient rule to reach the same conclusion.)

—1)72. 2t = —

We can now perform the requested substitution, simplifying the algebra as we go:

R S —
Var(r+1) 1 2 dt
-1 P

$2

1 -1
=—-2X éln ] +c using the given result
1 t+1 n
=1In c.
t—1

At this point, we wish to substitute ¢ for x, so we rearrange the original substitution to

get
1 1
t:\/—+1:\/x+ .
z x

This now yields:

NS %JrlJr
In | Y—=2—— C.
HlE-1 VT

We note immediately that we can drop the absolute value signs, since both the numerator
and denominator of the fraction are positive (the denominator is positive as t > 1 or
V(x+1)/z > 1). So we get, on multiplying the numerator and denominator of the
fraction by 1/ to clear the fractions,



t+1 Vi+1+vVz
In +ec=In| —=| +¢
t—1 V+1—+x
AR + V) (Vo +1+ V) .
(Vo +1-Vz)(Vz+ 1+ Va)
(VT F1+va)
=1In +c
(x4+1)—=x
zln(\/x+1+\/5)2+c
:2ln(\/x+1+\/g)+c,
which is what we were after.
The section of the curve ] 1
V=7 T Vee

between x = % and r = 1% is rotated through 360° about the x-axis. Show that the
volume enclosed is 2w In %.

To find the volume of revolution, we need to calculate the definite integral flg/gw my? da:

9/16
/ 7y do
1/8

—_
—_

+
r(z+1) z+1

9/16
s [lnx —41n \/_ +Vz+1) +In(z+ 1)} y using the above result
8

ﬂ(ln%— ln 16—1— E)—l—ln%)—W(ln%—élln(\/g—l—\/g)—l—ln%)

—r(2md —4m( +3) +2m3) - 7 (20 gl — 45l + 5%5) + 2 55
(2In3 —2In4) 41n2+(21n5—21n4))—

7(—2In(2v2) —4Inv2 + (2In3 — 21n(2v2))

=7m(2In3—-4In2—-4In2+2Inb5—-4In2)—
m(—3In2—-2In2+2In3 —31In2)

=7m(—4In2+2Inb)

=2m(—2In2+1nb)

:27rln§.

=T



Question 5

By considering the expansion of (1 + )™ where n is a positive integer, or otherwise,
show that:

n n n n
i e — on.
0 (6) () () ()7
We take the advice and begin by writing out the expansion of (1 4 z)™:

(1+2)" = (g)& + (T)ml + (Z)xQ 4+ (Z)x” (%)

where we have pedantically written in 2% and ! in the first two terms, as this may well
help us to understand what we are looking at.

Now comparing this expansion to the expression we are interested in, we see that the only
difference is the presence of the zs. If we substitute x = 1, we will get exactly what we

. arr=(5)+ ()« (6) ++ ()

as all powers of 1 are just 1.

(ii) (?) +2(Z) +3<Z> ++n<Z) = 21

For the rest of the question, there are two very distinct approaches, one via calculus and
one via properties of binomial coefficients.

Approach 1: Use calculus

This one looks a little more challenging, and we must observe carefully that there is no
(3) term. Comparing to the binomial expansion, we see that the term (:f) 2" has turned
into (:f)r Now, setting x = 1 will again remove the x, but where are we to get the r
from? Calculus gives us the answer: if we differentiate with respect to z, then 2" becomes

rz"~!, and then setting x = 1 will complete the job. Now differentiating (*) gives

n(l+z)" ! = (T) 12° + (Z) 22! + (g) Bt 4+ (Z) na"

so by setting x = 1, we get the desired result.

Approach 2: Use properties of binomial coefficients

()=t

We know that



so we can manipulate this formula to pull out an r, using r! = r.(r — 1)! and similar

expressions. We get
n\ n!
r n—r)lr!

(
1 n!
S (n—r)(r—1)
n (n—1)!
S (n—r)(r—1)!

so that r(’;) = n(:fj) This is true as long as r
n L9 n T n n—1 L n—1 T n—1
P n =N n PR n
1 2 n 0 1 n—1
where we have used the result from part (i) with n — 1 in place of n to do the last step.

()50 30) () -

Approach 1: Use calculus

1l and n > 1, so we get

n

’ ives us (3).
2)1‘ term glves us 9): SO we

Spurred on by our previous success, we see that now the ( 35

think of integration instead. Integrating (x) gives

1 n n\ 1 n\ 1 n 1
1 n+1: ) 1 Z 2 =z 3 [ n+1 )
n—i—l( + x) (0>:c +<1> 5% —|—(2) L +(n) g e

We do need to determine the constant of integration, so we put x = 0 to do this; this

gives
1 n n\ 1 n 1
L .0 —=.0 . 0
nt1 (0) +(1>2 T +<n)n+1 +o

Now substituting x = 1 gives

1
n+1"

1(1+1)"+1—n+1n++1n+ PRI
n+1 - \0/) " 2\1 3\2 n+1\n) n+1

Finally, subtracting n%l from both sides gives us our required result.

SO C =

(An alternative way to think about this is to integrate both sides from = =0 to z = 1.)
Approach 2: Use properties of binomial coefficients

We can try rewriting our identity so that the % stays with the » — 1 term; this gives us

(0)-1020)



n—1

Unfortunately, though, our expressions involve (Tfl) terms rather than (T_1

we can fix this by replacing n by n + 1 to get

1 n+1l\ 1/ n
n+1\ r Cr\r—1)
We substitute this in to get

n +1 n . n 1 n
0 2\1 n+1\n
B 1 n+1 L 1 n+1 L n 1 n+1
T n41\ 1 n+1\ 2 n+1\n+1
1

- - 2n+l_1
n—i—l( )

) terms, but

where we have again used the result of part (i), this time with n + 1 replacing n.

(iv) (?_) + 22 <Z) + 32 (Z) + o4 n? (Z) =n(n+1)2"2,

Approach 1: Use calculus

This looks similar to (ii), in that we have increasing multiples. So we try differentiating ()
twice, giving us:

n(n — 1)(1+2)"2 = (T) 1.0+ (Z) 2.12° + (Z) 3200+ 4 (Z) n(n — 1)z 2.

Unfortunately, though, the coefficient of (") is r(r — 1) rather than the r* we actually
want. But no matter: we can just add r and we will be done, as r* = r(r — 1) +r, and
we know from (ii) what terms like (g) .2 sum to give us. So we have, putting x = 1 in our
above expression:

n(n —1)(1+1)"2 = G‘) 1.0+ (Z).m + (g) 324+ (Z)n(n —1).

Now adding the result of (ii) gives

n

n(n —1)2"% 4 n2"! = (7;) (10+1) + <Z) (2142)+ (3

(”) (n(n—1) +n)

n

(n(n—1)+2n)2" % = (T) + (Z) 22+ (Z).SQ + (Z) n?

The left side simplifies to n(n + 1)2"72, and thus we are done.

).(3.2+3)+---+

SO



An alternative (calculus-based) method is as follows. The first derivative of (x), as we
have seen, is

n(l+z)" ! = (T) A2 + (Z) 22" + (g) B3rP e+ (Z) nx" L.

Now were we to differentiate again, we would end up with terms like n(n —1)z" 2, rather
than the desired n?z* (for some k). We can remedy this problem by multiplying the whole
identity by x before we differentiate, so that we are differentiating

nz(l+2)" ' = (?) dat + (Z) 22? + (Z) B3P 4 (Z) na".

Differentiating this now gives (using the product rule for the left hand side):

n(1+2)" ' +nn—1)r(1+2)" % = (n> 1220+ (Z) 2%r + (Z) Bt + (n) n2a"t

1 n

Substituting x = 1 into this gives our desired conclusion (after a small amount of algebra
on the left hand side).

Approach 2: Use properties of binomial coefficients

As this looks similar to the result of part (ii), we can start with what we worked out there,
namely r(’;) = n(fill), giving us

(T) +22(g)+...+n2(z) - n(”gl)mz(”;l) +n.3(";1>+...+n.n(zji)

Taking out the factor of n leaves us having to work out

(o)) o) ()

This looks very similar to the problem of part (ii) with n replaced by n — 1, but now the
multiplier of (’:) is r + 1 rather than r, and there is also an (") term. We can get over
the first problem by splitting up (r 4+ 1)(") as r(7) + (1), so this expression becomes

n—1 n—1 n—1
2 -1
() () (G
n—1+n—1 n n—1 T n—1
0 1 2 n—1
The first line is just part (ii) with n replaced by n — 1, so that it sums to (n—1).2"72, and

the second line is just 2771 = 2.2"72 by part (i). So the answer to the original question
(remembering the factor of n we took out earlier) is

n((n—1).2""2422"2) =n(n—1+42).2"*=n(n+1).2">



Question 6

Show that, if y = e”, then

d’y  dy
dy d?y oL : .
If y = e”, then P e” and Freie e”. Substituting these into the left hand side of (x)
T x
gives
d’y  dy

— +y=(r—1)" —ze” +e" =0,
T

so y = e” satisfies (x).

In order to find other solutions of this differential equation, now let y = ue®, where u
is a function of x. By substituting this into (x), show that

d?u du

(=) g+ @ -2 =0. ()

We have y = ue®, so we apply the product rule to get:

dy Y+ ue”
dz dﬁu
+
d?y (if $u> du du
= (et )+ (G )
—%e +2%e + ue”
= (a2 o)

(If you know Leibniz’s Theorem, then you could write down d?u/dz? directly.)

We now substitute these into () to get

(x—l)(ji+23—u+u>e —x<3x+u>e + ue” = 0.

Dividing by e® # 0 and collecting the derivatives of u then gives

d?u du

which gives (%) on simplifying the brackets.




du
By setting Pl in (*x) and solving the resulting first order differential equation
x

for v, find u in terms of x. Hence show that y = Ax + Be” satisfies (x), where A and B
are any constants.

du d?u v
As instructed, we set — = v, so that — = — which gives us
dx dx? dx

(a:—l)j—Z_—l—(x—Q)v:O.

This is a standard separable first-order linear differential equation, so we separate the
variables to get
1 dv r—2

v dx r—1
and then integrate with respect to = to get

/ldv:/—$_2dx.
v r—1

Performing the integrations now gives us

In |v] :/—<1—i) dz

=—x+Injz—-1|+¢,

which we exponentiate to get

|v] = [kle™"]z — 1],
where k is some constant, so we finally arrive at
v=ke “(x —1).
We now recall that v = du/dz, so we need to integrate this last expression once more to

find u. We use integration by parts to do this, integrating the e™* part and differentiating
(x — 1), to give us

u:/ke_m(x—l)dx

— h(—e ) (2 — 1) _/k;<—e—l’).1 dz
=k(—e ") (z—1)—ke™"+c

= —kxe " +c,
which is the solution to (xx).
Now recalling that y = ue® gives us y = —kx + ce® as our general solution to (x). In
particular, letting K = —A and ¢ = B, where A and B are any constants, shows that

y = Az + Be® satisfies (), as required.



Question 7

Relative to a fixed origin O, the points A and B have position vectors a and b, respec-
tively. (The points O, A and B are not collinear.) The point C' has position vector c
given by

c = aa+ b,

where @ and 3 are positive constants with o + < 1. The lines OA and BC meet
at the point P with position vector p, and the lines OB and AC meet at the point )
with position vector q. Show that

and write down q in terms of «, 5 and b.

The condition ¢ = aa + b with a + 8 < 1 and « and [ both positive constants means
that C' lies strictly inside the triangle OAB. Can you see why?

We start by sketching the setup so that we have something visual to help us with our
thinking.

A

[9) P\

The line OA has points with position vectors given by r; = Aa, and the line BC has
points with position vectors given by

rgzﬁ—i—uB?:b—l—p(c—b) = (1 —p)b+ pc.
The point P is where these two lines meet, so we must have

p=2Aa=(1-pb+puc
= (1 — w)b + p(aa + gb)
= (1 —p+Bu)b+aua.



Since a and b are not parallel, we must have 1 — y + S = 0 and ap = A. The first
equation gives (1 — S)u =1, s0 p=1/(1 — ). This gives A = a/(1 — f3), so that

aa

1-p

p:

Now swapping the roles of a and b (and hence also of a and 3) will give us the position
vector of ():
£b

1—a

q:

Show further that the point R with position vector r given by

aa+ (b
a+f

lies on the lines OC and AB.

We could approach this question in two ways, either by finding the point of intersection
of OC and AB or by showing that the given point lies on both given lines. We give both
approaches.

Approach 1: Finding the point of intersection

We require r to lie on OC|, sor = Ac, and r to lie on AB, sor = (1 — u)a+ ub, as before.
Substituting for ¢ and equating coefficients gives

ala+ fAb = (1 — p)a+ ub,
so that

ax=1—pu
B = p.

Adding the two equations gives (o + S)A =1, s0 A = 1/(a + ) and hence

c aa+fb
a+p a+p8 "

Approach 2: Showing that the given point lies on both lines

The equation of line OC'is r; = Ac, and

r_aa—i—ﬁb_ 1 .
 a+pB  a+p

is of the required form, so R lies on OC'.



The equation of the line AB can be written as ry—a = uzﬁ, so we want r—a = u(b—a).
Now we have

_aca+pb  a+p

a+ a—l—ﬁa
_ —PBa+pb
_—a+5
= ﬂ (b_a)a

a+p

which is of the form u(b — a), so R lies on both lines.

O oS
The lines OB and PR intersect at the point S. Prove that B_g =55

S lies on both OB and PR, so we need to find its position vector, s. Once again, we
require s = Ab = (1 — p)p + ur, so we substitute for p and r and compare coefficients:

s=Ab=(1—pu)p+ur
B oa aa+ (b
A -

_ (I =pa(a+ Bla+ u(l — f)(aa+ (b)

(1=8)(a+5)
_ (A= pa(a+ ) + pa(l - §))a+ pu(l — 5)5b
(1=8)(a+5)
_ oo+ —por—2uf + p)a+ p(l — B)pb
(1=8)(a+5)

Since the coefficient of a in this expression must be zero, we deduce that

_atf
a+28—-1'

so that

__pd=p)p

(1= p)(a+p)
a+p B
S a+28—-1(a+p)
By
a+268—1

Now, since @ and lﬁ are both multiples of the vector ¢, we can compare the lengths OQ)
and BQ in terms of their multiples of q. This might come out to be negative, depending
on the relative directions, but at the end, we can just consider the magnitudes.



We thus have, since q =

1—a’
gg:<1fa)/ 1fa_1
B 1fa>/ B;iza
_ p
B—-14+a

while

g_g:<a+2ﬁﬁ—1>/<a+fﬁ—l_l>
—a—fB+1
(a—i—?@—l)/(aiQﬂﬂjl)
g
 —a—-B+1

Thus these two ratios of lengths are equal, as the magnitude of both of these is

B
1—(a+p)




Question 8

(i) Suppose that a, b and ¢ are integers that satisfy the equation
a® + 36 = 9¢°.

Explain why a must be divisible by 3, and show further that both b and ¢ must
also be divisible by 3. Hence show that the only integer solution isa =b =c = 0.

We have a® = 9¢® — 30® = 3(3¢® — b%), so @® is a multiple of 3. But as 3 is prime, a itself
must be divisible by 3. (Why is this? If 3 divides a product rs, then 3 must divide either
r or s, as 3 is prime. Therefore since a® = a.a.a, and 3 divides a?, it follows that 3 must
divide one of the factors, that is, 3 must divide a.)

Now we can write a = 3d, where d is an integer. Therefore we have
(3d)* + 3b® = 9¢°,
which, on dividing by 3, gives
9d* + b* = 3¢°.

By the same argument, as b* = 3(c® — 3d?), it follows that b3, and hence also b, is divisible
by 3.

We repeat the same trick, writing b = 3e, where e is an integer, so that
9d* + (3e)® = 3¢
We again divide by 3 to get
3d® + 9 = ¢,
so that ¢3, and hence also ¢, is divisible by 3.

We then write ¢ = 3f, where f is an integer, giving
3d® 4+ 9¢* = (3f)°.
Finally, we divide this equation by 3 to get
d® 43> =913,

Note that this is the same equation that we started with, so if a, b, ¢ are integers which
satisfy the equation, then so are d = a/3, e = b/3 and f = ¢/3. We can repeat this process
indefinitely, so that a/3", b/3™ and ¢/3" are also integers which satisfy the equation. But
if a/3™ is an integer for all n > 0, we must have a = 0, and similarly for b and c.

Therefore the only integer solution is a = b =c¢ = 0.

[In fact, we can say even more. If a, b and ¢ are all rational, say a = d/r,b=e/s, c = f/t
(where d, e, f are integers and r, s, t are non-zero integers), then we have

(5) +2(0) =9()"



Now multiplying both sides by (rst)® gives
(dst)® + 3(ert)® = 9(frs)?,

with dst, ert and frs all integers, and so they must all be zero, and hence d = e = f = 0.

Therefore, the only rational solution is also a = b =c¢ = 0.]

(ii) Suppose that p, q and r are integers that satisfy the equation
pt 4+ 2¢* = 5t

By considering the possible final digit of each term, or otherwise, show that p and q
are divisible by 5. Hence show that the only integer solution is p = q¢ = r = 0.

We consider the final digit of fourth powers:

IS
=
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e

©O© 00 O Ul WK~ Ol

— O = O OOy = O = O
NN NDNDNNDNO

So the last digits of fourth powers are all either 0, 5, 1 or 6, and of twice fourth powers
are all either 0 or 2.

Also, 5r* is a multiple of 5, so it must end in a 0 or a 5.
Therefore if 2¢* ends in 0 (that is, when ¢ is a multiple of 5), the possibilities for the final
digit of p* + 2¢* are

(Oorlorbor6)4+0=0or1lorbor6,

so it can equal 57* (which ends in 0 or 5) only if p* ends in 0 or 5, which is exactly when
p is a multiple of 5.

Similarly, if 2¢* ends in 2 (so ¢ is not a multiple of 5), the possibilities for the final digit
of p* + 2¢* are
(Oorlorbor6)+2=2or3or7orS8,

so it can not be equal to 5r* (which ends in 0 or 5).
Therefore, if p* + 2¢* = 5r*, we must have p and ¢ both being multiples of 5.

Now as in part (i), we write p = 5a and ¢ = 5b, where a and b are both integers, to get

(5a)* + 2(5b)* = 5r?.



Dividing both sides by 5 gives
5%at +2.5%" = 1,
where we are using dot to mean multiplication, so as before, * must be a multiple of 5

as the left hand side is 5(5%a* + 2.52b%). Thus, since 5 is prime, r itself must be divisible
by 5. Then writing r» = 5c gives

5%t +2.5%" = (5¢)*,

which yields
a* +2b* = 5¢*

on dividing by 5°.

So once again, if p, g, r give an integer solution to the equation, so do a = p/5, b = ¢/5
and ¢ = r/5. Repeating this, so are p/5", q/5", r/5", and as before, this shows that the
only integer solution is p =q¢=1r = 0.

[Again, the same argument as before shows that this is also the only rational solution.]

This is an example of the use of Fermat’s Method of Descent, which he used to prove one
special case of his famous Last Theorem: he showed that z* + y* = 2* has no positive
integer solutions. In fact, he proved an even stronger result, namely that z* + y* = 22
has no positive integer solutions.

Another approach to solving the first step of part (ii) of this problem is to use modular
arithmetic, where we only consider remainders when dividing by a certain fixed number.
In this case, we would consider arithmetic modulo 5, so the only numbers to consider are
0, 1, 2, 3 and 4, and we want to solve p* + 2¢* = 0 (mod 5), where = means “leaves the
same remainder”. Now a quick calculation shows that p* = 1 unless p = 0, while 2¢* =
unless ¢ = 0, so that

pP+2¢*=0or 1)+ (0or2)=0,1,20r3 (mod 5)

with p* + 2¢* = 0 if and only if p = ¢ = 0.

Incidentally, Fermat has another theorem relevant to this problem, which turns out to
be relatively easy to prove (Fermat himself claimed to have done so), and is known as
Fermat’s Little Theorem. This states that, if p is prime, then a?~! = 1 (mod p) unless
a =0 (mod p). In our case, p =5 gives a* = 1 (mod 5) unless a = 0 (mod 5), as we
wanted.



Question 9

%2, 2b

The diagram shows a uniform rectangular lamina with sides of lengths 2a and 2b leaning
against a rough vertical wall, with one corner resting on a rough horizontal plane. The
plane of the lamina is vertical and perpendicular to the wall, and one edge makes an
angle of a with the horizontal plane. Show that the centre of mass of the lamina is a
distance a cos o + bsin « from the wall.

We start by redrawing the sketch, labelling the corners and indicating the centre of mass
as GG, as well as showing various useful lengths.

D

It is now clear that the distance of G from the wall is a cos « (horizontal distance from
wall to midpoint of AB) plus bsin a (horizontal distance from midpoint of AB to G), so
a total of acosa + bsin a.

Also, in case it is useful later, we note that the vertical distance above the horizontal
plane is, by a similar argument from the same sketch, asin a + bcos a.

The coefficients of friction at the two points of contact are each p and the friction is
limiting at both contacts. Show that

acos(2X + a) = bsina,

where tan A\ = p.

There are two approaches to this. Omne is to indicate the reaction and friction forces
separately, while the other is to use the Three Forces Theorem. We show both of these.



Approach 1: All forces separately

We start by sketching the lamina again, this time showing the forces on the lamina,
separating the normal reactions from the frictional forces.

D
Fln
A C
Of:
F, B
We now resolve and take moments:
Z(1) Fi+R,—W=0
%<—>) Rl — F2 =0
AM(A) Wi(acosa + bsina) — Ry.2acosa + Fy.2asina = 0

Since friction is limiting at both points of contact, we have F; = uR; and Fy, = uR,.
Substituting these gives:

Z(1) pRi + Ry — W =0 (1)
H(=) Ry — pRy =0 (2)
M (A) W(acosa + bsina) — 2aRy cos o + 2au Ry sina = 0 (3)

Equation (2) gives Ry = Ry, so we can substitute this into (1) to get W = (1 + p?)Rs.
Substituting this into (3) now leads to

(14 p?*)Ry(acos a + bsin o) = 2aRy(cos a — psin a).

We can clearly divide both sides by Ry, and we are given that tan A = pu, so we substitute
this in as well, to get

(14 tan® \)(acos o + bsin o) = 2a(cos & — tan Asin ).

We spot 1+ tan? A = sec? \, and so multiply the whole equation through by cos? A, as the
form we are looking for does not involve sec A:

acosa + bsin a = 2a(cos® A cos v — sin A cos Asin av).

Since the form we are going for is bsin @ = acos(2\ + «), we make use of double angle
formulee, after rearranging:

bsina = a(2cos® A cos a — 2sin A cos Asin a) — a cos
= a((2cos* A — 1) cosa — 2sin A cos Asin a)
= a(cos 2\ cos o — sin 2\ sin «)
= acos(2A + a),



and we are done with this part.

Approach 2: Three Forces Theorem

The ‘Three Forces Theorem’ states that if three (non-zero) forces act on a large body in
equilibrium, and they are not all parallel, then they must pass through a single point.
(Why is this true? Let’s say two of the forces pass through point X. Taking moments
about X, the total moment must be zero, so the moment of the third force about X must
be zero. Therefore, the force itself is either zero or it passes through X. Since the forces
are non-zero, the third force must pass through X.)

In our case, we have a normal reaction and a friction force at each point of contact. We
can combine these into a single reaction force as shown in the sketch. Here we have
written N for the normal force, F' for the friction and R for the resultant, which is at an
angle of € to the normal.

We see from this sketch that tanf = F//N = uN/N = p. In our case, since tan A = u we
must have 6 = .

We can now redraw our original diagram with the three (combined) forces shown:

Ry

D iy

We can now use the Three Forces Theorem is as follows. Looking at the diagram, we
know that the distance OB = 2acosa = OP + PB. Now we know OP = a cos a+ bsin «,
so we need only calculate PB.

But PB = PX tan A (using the triangle PBX), and

PX = OA + height of X above A

= 2asina + (acosa + bsina) tan A.



Putting these together gives

OB =2acosa=OP + PB
=acosa+bsina + (2asina + (acosa + bsin @) tan A) tan A
= acosa(l + tan® \) + bsin a(1 + tan® \) + 2a sin o tan A

= acosasec’ \ + bsin asec? \ + 2a sin a tan \.
We can now rearrange to get
bsin asec® A = 2a.cos o — a cos avsec’ \ — 2a sin o tan .
Since we want an expression for bsin o, we now multiply by cos? X to get

bsin o = 2a cos o cos® A\ — a cos o — 2asin o sin A cos A
= a((2cos* A — 1) cos o — (2sin A cos \) sin «)
= a(cos 2\ cos a — sin 2\ sin )
= acos(2) + ).

An alternative argument using the Three Forces Theorem proceeds by considering the
distance X P. Using the left half of the diagram, we have

XP=0A+O0OPtan A

= 2asina + (acos a + bsin @) tan .

From the right half of the diagram, we also have X P = PB/tan A, and PB = 2a cos o —
OP = acosa — bsin «, so that

2asina + (acosa + bsina) tan A = (acosa — bsin )/ tan \.
Now multiplying by tan A and collecting like terms gives
bsina(1 + tan® \) = acos a(1 — tan® \) — 2a sin a tan \.
Then using 1 + tan? A\ = sec? \ and then multiplying by cos? \ gives us

bsin o = acos a(cos® A — sin? \) — 2a sin a:sin A cos A
= acosacos 2\ — asin asin 2\
= acos(a+2N),

as we wanted.

T _

Show also that if the lamina is square, then A\ = 7}

Q.

We have a = b as the lamina is square, so that our previous equation becomes

asina = acos(2) + a).



Dividing by a gives
sina = cos(2\ + «).

Now we can use the identity sina = cos(§ — a), so that

T
——a=2\+o.
5 o + «

(Being very careful, we should check that we can take inverse cosines of both sides to
deduce this equality. This will be the case if both 0 < § —a < 7 and 0 < 2\ +a < 7.
But 0 < a < 7 so the first inequality is clearly true. For the second inequality, we have
0< A< Zsothat 0 <2A+a < 37” But since the cosine of this is positive (being sin ),
it must lie in the range 0 < 2\ + a < § as required.)

Subtracting « and dividing by 2 now gives our desired result:

—a= A\

IS



Question 10

A particle P moves so that, at time t, its displacement r from a fixed origin is given by
r= (et coS t)i + (et sin t)J

Show that the velocity of the particle always makes an angle of § with the particle’s
displacement, and that the acceleration of the particle is always perpendicular to its
displacement.

To find the velocity, v, and acceleration, a, we differentiate with respect to ¢ (using the
product rule).

We have
r= (et coS t)i + (et sin t)j
v =dr/dt = (et cost — e’ sint)i + (et sint + ¢’ cost)j

a=dv/dt = ((e'cost —e'sint) — (e'sint + e’ cost))i+
((e"sint + €' cost) + (' cost — e'sint)j
= (—2¢'sint)i + (2¢' cost)j.

We can rewrite these, if we wish, by taking out the common factors:
r =e'((cost)i+ (sint)j)
v =¢'((cost —sint)i+ (sint + cost)j)
a = 2¢'((—sint)i+ (cost)j)).

From these, we can easily find the magnitudes of the displacement, velocity and acceler-
ation:

Ir| = e'v/(cost)?2 + (sint)2 = ¢!

|v| = e'\/(cost — sint)2 + (sint + cost)?
= et\/QCOSQt + 2sin’t
= el\v/2

la| = 2¢'\/(—sint)2 4 (cost)? = 2¢.

We can now find the angles between these using a.b = 2|a||b| cos 8; firstly, for displace-
ment and velocity we have

e? (cost(cost — sint) + sint(sint + cost
(cost( ) ( )

*(cos®t + sin®t)
2t

r.v

e
e

, while

r.v =-e'e'v/2cosb,



so that cosf = 1/\/5, so that 6 = 7 as required.

Next, for displacement and acceleration we have
r.a = 2e”(cost(—sint) + sintcost) =0,

so they are perpendicular.

Geometric-trigonometric approach
There is another way to find the angles involved which does not use the scalar (dot)
product.

Recall that the velocity is v = e'((cost — sint)i + (sint + cost)j). We can use the
“Rcos(f + a)” technique, thinking of cost — sint as 1cost — 1sint, so that
cost —sint = \/5(\%5 cost — \/LE sint)
= V/2(cost cos T —sintsin§)
= V2cos(t+ %)
sint + cost = \/5(\% sint + \/iicost)
= V2(sin t cos 7+ costsin %)

= V2sin(t + 7)

Thus v = v/2¢!(cos(t + Z)i +sin(t + T)j), so v is at an angle of T with r.

Likewise, a makes an angle of 7 with v, and so an angle of 7 with r.

Sketch the path of the particle for 0 <t < 7.

One way of thinking about the path of the particle is that its displacement at time ¢ is
given by r = et((cos )i+ (sin t)j), so that it is at distance e’ from the origin and at an
angle of ¢ (in radians) to the z-axis (as ((cost)i+ (sint)j) is a unit vector in this direction).
Thus its distance at time t = 0 is ¢ = 1, and when it has gone a half circle, its distance
is ™, which is approximately e® ~ 20. So the particle moves away from the origin very
quickly!

Another thing to bear in mind is that its velocity is always at an angle of 7 to its
displacement. Since it is moving away from the origin, its velocity is directed away from
the origin, so initially it is moving at an angle of 7 above the positive r-axis.

As we sketch the path, we also indicate the directions of the velocities at the times ¢ = 0,

tzgandtzw.

Y

/_ew 1.§C




A second particle () moves on the same path, passing through each point on the path
a fixed time T after P does. Show that the distance between P and () is proportional
to et.

We write rp = r for the position vector of P and rq for the position vector of (). We
therefore have

rp = (et cost)i + (et sint)j
rg = (e Tcos(t —T))i+ (e "sin(t — T))j,

and so we can calculate |rp — rg|?:

rp —rg|* = (&' cost — e cos(t — T))2 + (e'sint — e sin(t — T))2
= (e% cos?t — 2eet™T costcos(t — T') + 2D cos?(t — T))—i—
(e* sin’t — 2¢'e Tsintsin(t — T) + D sin®(t — T))
= e* — 2e* " ((costcos(t — T) +sintsin(t — T)) + e?(t=T)
=e? — 2" Tcos(t — (t —T)) +e* 2
= th(l — 2 TcosT + e_QT),

so that

|rp —rg| = e'/1—2eTcosT + 2T,

which is clearly proportional to e, as required, since T is a constant.



Question 11

Two particles of masses m and M, with M > m, lie in a smooth circular groove
on a horizontal plane. The coefficient of restitution between the particles is e. The
particles are initially projected round the groove with the same speed u but in opposite
directions. Find the speeds of the particles after they collide for the first time and show
that they will both change direction if 2em > M — m.

This begins as a standard collision of particles question. ALWAYS draw a diagram
for collisions questions; you will do yourself (and the examiner) no favours if you try to
keep all of the directions in your head, and you are very likely to make a mistake. My
recommendation is to always have all of the velocity arrows pointing in the same direction.

In this way, there is no possibility of messing up the Law of Restitution; it always reads
V1 — U

vy — vy = e(ug — uy) or = e, and you only have to be careful with the signs of

U2 — U
the given velocities; the algebra will then keep track of the directions of the unknown

velocities for you.

U =u Uy = —U
Before @—»1 @—»2
v v
After @—»l @—»2
Then Conservation of Momentum gives

Muy + muy = My, + mus
and Newton’s Law of Restitution gives

vg — v1 = e(u; — ug).

Substituting u; = v and uy = —u gives
Muvy +mvy = (M — m)u (1)
Vg — V1 = 2€u. (2)

Then solving these equations (by (1) —m x (2) and (1) + M x (2)) gives
(M —m — 2em)u

= 3

v M+m )
(M —m+2eM)u

= ) 4

2 M+m (4)

The speeds are then (technically) the absolute values of these, but we will stick with these
formulee as they are what are needed later.



Now, the particles both change directions if v; and v, have the opposite signs from u,
and wusq, respectively, so v; < 0 and v, > 0. Thus we need

M —m—2em <0 and (5)
M —m+2eM > 0. (6)

But (6) is always true, as M > m, so we only need M —m < 2em from (5).

After a further 2n collisions, the speed of the particle of mass m is v and the speed of
the particle of mass M is V. Given that at each collision both particles change their
directions of motion, explain why

mv — MV =u(M —m),

and find v and V' in terms of m, M, e, u and n.

The fact that the particles both change their directions of motion at each collision means
that if they have velocities vy and vy after some collision, they will have velocities —v; and
—uvq before the next collision. This is because they are moving around a circular track,
and therefore next meet on the opposite site, and hence are each moving in the opposite
direction from the one they were moving in. (We do not concern ourselves with precisely
where on the track they meet, and we are thinking of our velocities as one-dimensional
directed speeds.)

Therefore, muv,, + Mwv,; is constant in value after each collision, where v,, is the velocity
of the particle of mass m, and vy, that of the particle of mass M, but it reverses in
sign before the next collision. So after the first collision, it it Mu — mu to the right (in
our above sketch), and hence after an even number of further collisions, it will still be
Muvy + mv, = Mu — mu to the right. But after an even number of further collisions,
the particle of mass M is moving to the left, so vy, = =V, v,, = v. Thus

mv — MV = (M —m)u.

Also, since there are a total of 2n+1 collisions, we have, by 2n+1 applications of Newton’s
Law of Restitution,
V +ov =" u4u).

Solving these two equations simultaneously as before then yields

(2me*t — M +m)u
M +m
(2Me* 1 + M — m)u

M +m '

V:

v =



Question 12

A discrete random variable X takes only positive integer values. Define E(X) for this
case, and show that

E(X) = ip(x > n).

For the definition of E(X), we simply plug the allowable values of X into the definition
of E(X) for discrete random variables, to get

E(X)=> nP(X =n).

Now, we can think of n, P(X = n) as the sum of n copies of P(X = n), so that we get

o0

E(X)=> nP(X =n)

n=1

X=1+
P(X=2)+P(X=2)+
P(X=3)+P(X=3)+P(X=3)+
P(X=4)+P(X=4)+P(X=4)+P(X =4)+
Adding each column now gives us something interesting: the first column is P(X =
1)+P(X =2)+P(X =3)+---=P(X > 1), the second column is P(X =2) +P(X =
3)+ -+ =P(X > 2), the third column is P(X =3) 4+ P(X =4)+--- = P(X > 3), and

so on. So we get

EX)=PX>21)+PX>22)+P(X=23)+P(X >4)+---
=) _P(X >n),
n=1
as we wanted.

An alternative, more formal, way of writing this proof is as follows, using what is some-
times called “summation algebra”:



E(X)=> nP(X =n)

= Z Z P(X =n) summing n copies of a constant
n=1 m=1

= Z P(X =n) writing it as one big sum
1<m<n<oo

i i P(X =n) see below

m=1n=m

= iP(X >m),
m=1

which is the sum we wanted. For the penultimate step, note the we are originally summing
all pairs of values (m,n) where n is any positive integer and m lies between 1 and n, so
we have 1 < m < n < oo, as written on the third line. This can also be thought of as
summing over all pairs of values (m, n) where m is any positive integer (i.e., 1 < m < 00),
and n is chosen so that m < n < oo, that is, we are summing on n from m to oco.

[One final technical note: we are allowed to reorder the terms of this infinite sum because
all of the summands (the things we are adding) are non-negative. If some were positive
and others were negative, we might get all sorts of weird things happening if we reordered
the terms. An undergraduate course in Analysis will usually explore such questions.|

I am collecting toy penguins from cereal boxes. Fach box contains either one daddy
penguin or one mummy penguin. The probability that a given box contains a daddy
penguin is p and the probability that a given box contains a mummy penguin is ¢,
where p #0, ¢ # 0 and p+ q = 1.

Let X be the number of boxes that I need to open to get at least one of each kind of
penguin. Show that P(X > 4) = p® + ¢3, and that

1

We ask ourselves: what needs to happen to have X > 47 This means that we need to
open at least 4 boxes to get both a daddy and a mummy penguin. In other words, we
can’t have had both a daddy and a mummy among the first three boxes, so they must
have all had daddies or all had mummies. Therefore P(X > 4) = p® + ¢>.

This immediately generalises to give P(X > n) = p"! + ¢"!, at least for n > 3. For
n=1,PX >1)=1,and forn =2, P(X >2)=1=p' +¢', as we argued above.



Therefore, we have

= iP(X >n
n=1

=1+ +d )+ @+ )+ 0+ )+
=A+p+p+pt+ )+ +a+d+¢+) -1

1 1
=t —1 adding the geometric series
1—-p 1—¢q
1 1
=—-+--1 asp+q=1
q P
_btyq 1
qp
1 . :
=——1 again using p +q = 1.
pq

Hence show that E(X) > 3.

To show that E(X) > 3, we simply need to show that piq > 4. But this is the same as
showing that pg < }U by taking reciprocals.

1

Now, recall that ¢ = 1 — p, so we need to show that p(1 — p) < 7. To do this, we rewrite

the quadratic in p by completing the square:
)2

Since (p — 3)? > 0 for all p (even outside the range 0 < p < 1), we have p(1 — p) < 1,

required, with equahty only when p =¢q = 2

N =

pl—p)=p—p"=1—(p—

as

This can also be proved using calculus, or using the AM—GM inequality, or by writing
1/pq = (p + q)*/pq and then rearranging to get (p — q)? > 0.



Question 13

The number of texts that George receives on his mobile phone can be modelled by
a Poisson random variable with mean A texts per hour. Given that the probability
George waits between 1 and 2 hours in the morning before he receives his first text is p,
show that

pe?r —er 1 =0.

Given that 4p < 1, show that there are two positive values of A that satisfy this
equation.

Let X be the number of texts George receives in the first hour of the morning and Y be
the number he receives in the second hour.

Then X ~ Po(\) and Y ~ Po(A), with X and Y independent random variables.
We thus have
P(George waits between 1 and 2 hours for first text) = P(X =0 and Y > 0)
= P(X = 0).P(Y > 0)
=eM(1l—-e?)

so that e™ — e 2 = p.

Multiplying this last equation by e?* gives e* — 1 = pe?; a straightforward rearrangement
yields our desired equation.

(This equation can also be deduced by considering the waiting time until the first text;
this is generally not studied until university, though.)

The solutions of the quadratic equation in e* are given by

A 1++/1—4p
2p '
But we are given that 4p < 1, so that 1 — 4p > 0 and there are real solutions. We need

to show, though, that the two values of e* that we get are both greater than 1, so that
the resulting values of A itself are both greater than 0.

We have

e

1+y/1—-4
2—p>1 — 1++/1—-4p>2p
P
— +/1—4p>2p—1.
1

Now, since 4p < 1, we have 2p < 3, so 2p — 1 < 0, from which it follows that for the

positive sign in the inequality, v/1 —4p > 0 > 2p — 1. It therefore only remains to show
that —y/1 —4p > 2p — 1. But
—V/1—4p>2p—1 = J/1—dp<—(2p—1)
— 1—4p<(2p—1)
= 1 —dp < 4p® —4p+1,



which is clearly true as 4p* > 0. (We were allowed to square between the first and second
lines as both sides are positive.)

A

Thus the two solutions to our quadratic in e* are both greater than 1, so there are two

positive values of A which satisfy the equation.

The number of texts that Mildred receives on each of her two mobile phones can be
modelled by independent Poisson random variables but with different means \; and Ay
texts per hour. Given that, for each phone, the probability that Mildred waits between
1 and 2 hours in the morning before she receives her first text is also p, find an expression
for A\ + A\ in terms of p.

Each phone behaves in the same way as George’s phone above, so the two possible values
of X are those found above. That is, the values of e* and e*? are the two roots of
pe?r —er +1=0.

We know that the product of the roots of the equation az? + bz + ¢ = 0 is ¢/a," so in our
case, eMe? = 1/p, so that eMt2 = 1/p, giving

A+ A =1In(1/p) = —1Inp.

Find the probability, in terms of p, that she waits between 1 and 2 hours in the morning
to receive her first text.

Let X7 be the number of texts she receives on the first phone during the first hour and
Y) be the number of texts that she receives on the first phone during the second hour.
Then X; and Y] are both distributed as Po(\1), so

P(X;=0)=e™
P(Y; =0) =e ™.

Now let X, and Y5 be the corresponding random variables for the second phone, so we
have

P(X, =0) =e
P(Y, =0) =e 2.

We must now consider the possible situations in which she receives her first text between
1 and 2 hours in the morning. She must receive no texts on either phone in the first hour,
and at least one text on one of the phones in the second hour. We use the above result
that Ay + Ay = —Inp, so that e™1 72 = p.

"Why is this? If the roots of axz? + bx + ¢ = 0 are o and 3, then we can write the quadratic as
a(z —a)(z —B) = a(x? — (a+ B)x + af), so that ¢ = aaf3, or a3 = c/a. Likewise, b = —a(a + 3) so that
a+p=-b/a.



Thus

P(first text between 1 and 2 hours)
=P(X; =0and Xy =0and Y; > 0 or Y5 > 0 or both)
=P(X; =0).P(X2 =0).(1 - P(Y; =0 and Y> = 0))
=P(X; =0).P(X2 =0).(1 - P(Y1 =0).P(Y2 = 0))
= e_Al.e_)‘Q.(l — e_’\l.e_’\Q)
= M2 (1 — e M)

=p(1 —p),

and we are done.

Alternative approach

This approach uses a result which you may not have come across yet: the sum X +Y of
two independent Poisson random variables X ~ Po(A) and Y ~ Po(pu) is itself a Poisson
variable with X + Y ~ Po(\ + p).

Since the number of texts received on the two phones together is the sum of the number
of texts received on each one, the total can be modelled by a Poisson random variable
with mean A = A\ + Ay texts per hour.

Then the probability of waiting between 1 and 2 hours in the morning for the first text is
given by ¢, where
g —er +1=0,

using the result from the very beginning of the question, replacing p with ¢ and A with A.
Since A = A\; + Ay = In(1/p) from above, e* = 1/p.
Therefore
e -1
q= Te2A
_I/p—-1
(1/p)?
=p*(1/p—1)
=p(l—p).




Hints & Solutions for STEP 11 2010

1 When two curves meet they share common coordinates; when they “touch” they also share a

common gradient. In the case of the osculating circle, they also have a common curvature at the
2

point of contact. Since curvature (a further maths topic) is a function of both dy and d g , the
X X

question merely states that C and its osculating circle at P have equal rates of change of gradient.
It makes sense then to differentiate twice both the equation for C and that for a circle, with
equation of the form (x — a)* + (y — b)® = r, and then equate them when x = 17z . The three

resulting equations in the three unknowns a, b and r then simply need to be solved simultaneously.

2
Fory= 1-x+tanx, j—y =—1+sec’ and d Z =2 sec’ tan x .
X X
2 2
For (x—a)’+ (y—h)>=r?, 2(x—a) + 2(y - h) Y _o and 2+2(y-b) d—z’ +2(d—y] =0.
dx dx dx
AAAAAAAAAAAAAAA When x=17,y=2-17z andso ((z-af +(2-iz-b) =r?;
dy = _(x=a) =1 then gives a relationship between a and b;
dx (y-b)
d’y _ 4 :
and —5- =4= - gives the value of b.
dx 2(y—h)
Working back then gives a and r.
Answers: The osculating circle to C at P has centre (17 -4, $—17) and radius +.
2 The single-maths approach to the very first part is to use the standard trig. “Addition” formulae for

sine and cosine, and then to use these results, twice, in (i); firstly, to rewrite sin®x in terms of
sin3x so that direct integration can be undertaken; then to express cos3x in terms of cos’x in
order to get the required “polynomial” in cosx. Using the given “misunderstanding” in (ii) then
leads to a second such polynomial which, when equated to the first, gives an equation for which a
couple of roots have already been flagged. Unfortunately, the several versions of the question that
were tried, in order to help candidates, ultimately led to the inadvertent disappearance of the
interval O to xin which answers had originally been intended. This meant that there was a little bit
more work to be done at the end than was initially planned.

c0s3x = €0S(2X + X) = C0S2X COS X — sin2x sin x = (2¢ — 1)c¢ — 2s¢.5 = (2¢* — 1)¢ — 2¢(1 - ¢?)
=4¢®-3c.

sin3x = sin(2x + x) = sin2x cos X + c0s2x sin x = 2sc.c + (1 — 25%)s = 25(1 — s?) + (1 — 25%)
=35 - 4s°

(i) 1 (a) = j(?sinx—ssin3x) dx = [(sin x+2sin3x) dx = [~ cosx—Zcos3x]”
0 0
=-cos a — 2 (4cos’ar —3cosa) +1+2 =-8c%+c+ 2

3 3
and 1 (@) =0 when c=1 (a¢=0)



(i) J (@) = [Zsin? x—&sin* x]* = 2 (1~ cos’a) - 2(1 - cosa)? = - 2¢* + L c?+ 3
1 () =J (a) = 0=12c*-16c3-3c®+6¢c+1=(c—1)?(2c+1)(6¢c+1)

Thuscos =1, @ =0; cos a=-%, @ = 27 ;and cos a= -1, @ = 7—cos™* ().

Answers: ¢ =2nrx, 2nztxz, (2n+)r+cos i

You don’t have to have too wide an experience of mathematics to be able to recognise the
Fibonacci Numbers in a modest disguise here. (However, this is of little help here, as you should
be looking to follow the guidance of the question.) In (i), you are clearly intended to begin by
substituting n = 0, 1, 2 and 3, in turn, into the given formula for F, using the four given terms of
the sequence. You now have four equations in four unknowns, and the given result in (i) is
intended to help you make progress; with (ii) having you check the formula in a further case. In
the final part, you should split the summation into two parts, each of which is an infinite geometric
progression.

()Fo=0 = 0=a+borb=-a.ThenF1=1 = 1=a(l- ).
[Fo=1 = 1=a(#*- 1) = A+ u=1isneeded later]
and Fs=2 = 2=a(®- 1% = a(1- u) (A* + Au+ 1) by the difference of two cubes
=1 (B + Au+ 1) = P+ Au+Ff=2
Then, using any two suitable egns., e.g. any two of Au=-1, 1—u= g and A+ u=1,and

] ) . 1 1 1 1
solving simultaneously givesa= —, b=— —, A= ={1++/5), u= =11-+/5J.
; 79 J5 J5 e8] = 30-5)
(if) Using the formula Fn=a 2" +b u" = ﬁ{mfs)n ~(1-+/5)"} with n =6 the Binomial

Theorem gives (1++v5) =1+ 65 +15.5+205y5 +15.5? + 6.5?/5 +57= 576 + 25645
Similarly, (1— 5| =576 25615 so that Fo = ﬁ{mz\@} =8,

& F_aa (A ae(u) | 1 1 1 1 .
(i) Z‘, 2"t~ EZ) [5) _EHZ::; (?j ) 2\/3[1—}1(1“/5)}2%[1-}1(1—%)} Heing the
Soo formula for the two GPs;
1 4 ) 1 4
B 2\/5(3—«/5] 2\/5(3+\/§jl

Rationalising denominators then yields %[%J_i[ﬁJ = i(&] =1.




Hopefully, the obvious choice is y = a — x for the initial substitution and, as with any given
result, you should make every effort to be clear in your working to establish it. Thereafter, the two
integrals that follow in (i) use this result with differing functions and for different choices of the
upper limit a. Since this may be thought an obvious way to proceed, it is (again) important that
your working is clear in identifying the roles of f(x) and f(a — x) in each case. In part (ii), however,
it is not the first result that is to be used, but rather the process that yielded it. The required
substitution should, again, be obvious, and then you should be trying to mimic the first process in
this second situation.

(i) Using the substn. y =a—-x,dy=-dx and (0, a) — (a, 0) so that
ot gof feoy) gy f@y
o )+ f(@a-x) . Fla-y)+f(y) o f@-y)+f(y)

:j“- f(a—x)
o F(x)+ f(a-x)

dy

dx , since the x/y interchange here is nothing more than a re-labelling.

Then 21 = ja' F)+ fa-x) g jll.dx: [X]P =a = I=1a
T 00+ fa—x) 0

For f(X) = In(L +x), In@2 +x=x3 =In[(1 +X)(2-=x)] = In(1 + x) + In(2 = X)

and In(2 - x) = In(1+ [1 - x)) = fa~X) with a=1 so that jf(x)i(fle_x) dx= 1.

7l2 . 7l2 - 7r/2

sin x sin x sin x
_ — ~ _dx = 2 dx =1 2.
Isin(x+}17z) " J‘smxf+cosxf J.S|nx+sm 17-X) X =42

12

(i) For u= % du = —X—lzdx and (1,2)— (2,1).

1 sin x £ 1 Xsin x °°  Lsin()
Then [L.—SINX g = L XSINX 4o SNy
°n O—Lx (sinx+sin(%)) " Ojsxz (sin x+sin(%)) " !(sm(ﬁ)+smu) -
2 Al 2 in(1
s J‘i.%du or Il.&dx
Ju(sinu+sin(2)) Jox " (sin x +sin(2))
2
Adding then gives 2 | = j%dx: [Inx]* =2In2 = I1=In2.

0.5

The opener here is a standard bit of A-level maths using the scalar product, and the following
parts use this method, but with a bit of additional imagination needed. In 3-dimensions, there are
infinitely lines inclined at a given angle to another, specified line, and this is the key idea of the
final part of the question. Leading up to that, in (i), you need only realise that a line equally
inclined to two specified (non-skew) lines must lie in the plane that bisects them (and is
perpendicular to the plane that contains, in this case, the points O, A and B). One might argue that
the vector treatment of “planes” is further maths work, but these ideas are simple geometric ones.



CoOS2¢ = (1! 11 1).(51 _11 _1) :1

V3427 3

(m n, p)e(1, 1,1 (m n, p)e(5 -1 -1)

Jm?+n?+p2 43 - mZenty p? Af27

ie. 3(m+n+p)=5m-n-p or m=2(n+p).

(i) 1 equally inclined to OA and OB iff

m+n+p

Jm?+n?+p2A3
cos2a =2cos’a —1=4% = cosa=Z,sothat m+n+p=m’+n’+p°2.

Squaring both sides: m® + n?+ p? + 2mn + 2np + 2pm = 2(m* + n? + p?)

For I, to be the angle bisector, we also require (e.g.) =cos a, Where

— 2mn + 2np + 2pm = m? + n® + p°
Setting m =2n+2p (or equivalent) then gives 2np + (2n + 2p)* = (2n + 2p)? + n* + p?

which gives (n—p)?=0 = p=n, m=4n.

m 4
Thus | n |=| 1|, or any non-zero multiple will suffice.
p 1

(i) If you used the above method then you already have this relationship; namely,
2UV + 2vW + 2WU = U2 + VP + WP

Thus, 2xy +2yz +22x =X’ +y* + 2 gives all lines inclined at an angle cos™*<Z to OA and
hence describes the surface which is a double-cone, vertex at O, having central axis OA .

Although it seems that 3-dimensional problems are not popular, this is actually a very, very easy
question indeed and requires little more than identifying an appropriate right-angled triangle and
using some basic trig. and/or Pythagoras. There are thus so many ways in which one can approach
the three parts to this question that it is difficult to put forward just the one.

D

(i) Taking the midpoint of AB as the origin, O,
with the x-axis along AB and the y-axis along
OC, we have a cartesian coordinate system to
help us organise our thoughts.

Then A=(-%,0,0), B=(, 0, 0),
C= (0, @ 0) by trig. or Pythagoras, and
P= (O, SEN 0). The standard distance formula

then gives PA (or PB) = 2 and PD = £ or ,/2.

[
@

(ii) The angle between adjacent faces is (e.g.) #DOC = cos‘l{ ] in right-angled triangle

NI
oy

1

DOP, which gives the required answer, cos™ "5 .



The centre, S, of the inscribed sphere must, by symmetry,
lie on PD, equidistant from each vertex.

By Pythagoras, X*= L+ (8—2@x+x2) - X= @

Then r = xsin(90° — (ii)) = 1 x= 3%,

Alternatively, if you know that the sphere’s centre is at
The centre of mass of the tetrahedron, the point (S)

with position vector +(a+b+c+d), then the answer
is just L1DP = &,

The first two parts of the question begin, helpfully, by saying exactly what to consider in order to
proceed, and the material should certainly appear to be routine enough to make these parts very
accessible. Where things are going in (iii) may not immediately be obvious but, presumably, there
is a purpose to (i) and (ii) which should become clear in (iii).

(Hy=x*-3aqx-q(l +q) = % =3(*-q) =0 for x=+,/q.

When x = +\/a, y:—q(\/a+l)2<0 since q>0
When x = —\/E, y:—q(\/a—l)2 <0 since gq>0 and g=1

Since both TPs below x-axis, the curve crosses the x-axis once only (possibly with sketch)

2 3
(yx=u+d = x‘°’:u3+3uq+3—+q—3
u u u
2 3 2
0=x3—3qx—q(1+q):u3+3uq+3q?+%—\?»qu—BqT—q—q2
3
= U+ %—q(1+q) =0 or (u3)2—q(1+q)(u3)+q3:0

oo 0+’ Ara)’ —40° _ g
2 2

= %{1+qi (1—Q)2}= %{1+qi(1—t1)} =q or ¢

giving u= q% or q% and x= q% + qg

{1+q4_r\/1+2q+q2—4q}

(i) a+f=p, af=q = a’+p°=(a+p) -3ap(a+p)=p°-3qp.

One root is the square of the other <> a=4% or f=a? < 0=(a’ - f)a-p?).
Then 0= (o - Bla - B%)=a’ + f° —af — (aB)’ = p* —3qp - q(1+q)
©p=g g




When asked to draw sketches of graphs, it is important to note the key features. The first curve is a
standard “exponential decay” curve; the second has the extra factor of sinx. Now sinx oscillates
between —1 and 1, and introduces zeroes at intervals of 7z Thus, C, oscillates between C; and —Cj,
with zeroes every z units along the x-axis. This sketch of the two curves should then make it clear
that the x; that are then introduced are the x-coordinates of C,’s maxima, when sinx = 1. [It is
important to be clear in your description of x, and xn+1 in terms of n as these are going to be
substituted as limits into the area integrals that follow.] The integration required to find one
representative area will involve the use of “parts”, and the final summation looks like it must be
that of an infinite GP.

A
1
y=e *
0 \/Z A .
———————————————— y_é-__-e-—)z__—--—_
_ 1,,—”’

The curves meet each time sinx=1 when x=2nz + % (n=0,1,2, ...).
(4n-3)xz (4n+l)7z

Thus x, = 5

and X,+1 =

J'(e‘x sin x)dx attempted by parts = —e™*.cos x —j(e‘x.cos x)dx or —e.sinx —J'(e‘x.sin x) dx

(depending on your choice of ‘1" and ‘2" part) = —e™.cos X —{ex.sin X + I(e’x.sin x)dx} .

Then | = —e™*(cosx+sinx) —1 (by “looping”) = —1e *(cosx +sin x)

Xn+1 Xn+1
Xn+

J'eX esinx)dx = [-e*+1e" (cosx+sinx)]xn or [%e‘x(cosx+sinx—2)]xn

X

An

n

e U (041-2)-1e "V (04+1-2) = 1e I (C1467)

N

Note that A; = %e’g”(ez” —1) and An.1=e?"A, sothat iAn = Al%L+(e‘2”)+(e‘2”)2 +}
n=1

1 s, e27r
- 1 2

=7 — 2€ ’ (e _1)X 27

1-e e” -1

= %e_g”(ez” —1)>< (using the Soo of a GP formula) = %e_%”




9 Once you have written down all relevant possible equations of motion, this question is really quite
simple; the two results you are asked to prove arise from considering either times or distances to
the point of collision. There is, however, one crucial realisation to make in the process, without
which further progress is almost impossible; once noted, it seems terribly obvious, yet it probably
doesn’t usually fall within the remit of standard A-level examination questions.

For Py, x,=0, X, =ucosa, X =utcosa, y,=-0, Y, =usina —gt, y, =utsina —1 gt
ForPy, x,=0, X, =vCos 3, X, =vtcos B, y,=-@, Y, =vsin B—gt, y, = vtsin g -1 gt’
H 2 ain?
. . . in n .
Now P is at its greatest height when y, =0 = t= usina = yi1=h= us2|—a and it follows
g
that usina = ,/2gh
Note that if the two particles are at the same height at any two distinct times (one of whichis t=0
here), then their vertical speeds are the same throughout their motions. Thus u sina =vsing.
2vsin g . . .
y2=0,t#0 = t= . This is the time when P, would land. Also, the collision occurs
g
when x; =b = t= is the time of the collision.
VCOoS

Then t(P2 %—range) < t(collision) < t(P2 range) (or by distances)

- - 2 - 2 -
- vsin S < b < 2vsin g - vesin gcos f <b< 2v-sin gcos S

g vcos g g g

H 2 H 2
= Mcotﬂ <b< Mcotﬂ. Using usina =vsing= ,/2gh then gives

g g
2gh 4gh
icotﬂ <bh< icotﬁ’ = 2hcot S <b< 4hcotpg.
g g

One could repeat all this work for P4, but this is not necessary. Since the particles are at their
maximum heights simultaneously (see the above reasoning) and would achieve their “ranges”
simultaneously also, we have 2hcota <a< 4hcota.

10 | always feel that collisions questions are very simple, since (as a rule) there are only the two main

principles — Conservation of Linear Momentum and Newton’s Experimental Law of Restitution —
to be applied. Such is the case here. Part (ii) is only rendered more difficult by the introduction of
a number of repetitions, and then the question concludes with some pure mathematical work using
logarithms.

(1) >u Using CLM: bmu = bmvg + mva .
@ @ Using NEL: U =va-V;g.
i ! . o 2bu _ (b-1u
Vg —> vy, Solving simultaneously: va = ool and vg = YR

1+1

Then va = (i]u — 2u— as b — oo, and va <2u always.
b



(i)

—Fu=u; U=V, — Up =Vy
—>V; —> VvV, —» Vv, —>V
. . 22 22 22 Y
Using the results of (i), vo=u;=|——U; U3=|—— U, =|—— | U; ... etc. ...
. ). v2=u, (MJ ’ (ﬂwl} ’ (/1+1)
n-1 n
all the way down to u, = 24 U, ;= 24 uand v= 24 u,= 24 u
A+1 A+1 A+1 A+1
Since up = %>1, as A>1, it follows that v can be made as large as possible.
_l’_
- — (s) . 8 log 20
In the case when A=4, v=(2)"u >20u requires nlog(2) >log20 = n> =0l
9
Now log 2 =0.30103 = log 8 = 3log 2 = 0.90309
and log5=1og 10-1log 2 =1-0.30103 = 0.69897
so that log (&) = log 8 — log 5 = 0.20412.
1.30103
Also log 20 =log 10 + log 2 =1 + 0.30103 = 1.30103, so we have n> :
0.20412

Since 6 x 0.20412 =1.22472 and 7 x 0.20412 = 1.42884, N, = 7.

11

A few years ago, a standard “three-force” problem such as this would have elicited responses
using Lami’s Theorem; since this tidy little result seems to have lapsed from the collective A-level
consciousness, | shall run with the more popular, alternative Statics-question approach of
resolving twice and taking moments. In order to get started, however, it is important to have a
good, clear diagram suitably marked with correct angles. The later parts of the question consist
mostly of trignometric work.

R T

Res.T Tsin(B-6 +Rsin(a+ =W
Res.—» Tcos(f—6) =Rcos(a+ 0

Ad  W.2lcosd =T.3lsing

T cos(f-6) sin(a+ 6) = 3Tsing
cos(a +6) 2c0sd
= 2 c0s8 (cosa.cosd —sin a.sin §)(sin S.cos @ — cos A.sin 6)
+ 2 cosé (cos S.cos @ + sin B.sin @)sin a.cos & + cos a.sin )
=3 sing (cosa.cos @ —sin a.sin 6)

Substituting to eliminate T ’s (e.g.) = Tsin(f-6) +



Dividing by cosé cosa cosp
= 2(cosé —tan a.sin B)(tan S.cosd —sin 8) + 2(cos O + tan f.sin &) (tan «x.cos & + sin O)

= 3tan f(1-tan.tan @)
Multiplying out, cancelling and collecting up terms, and then dividing by tana tang then gives
the required answer 2 cotf + 3 tané = cota .

1
0 =30° B =45 = cota= 2.1+3.—— = 2+4/3,
p 3
2
and tan15° = tan(60° — 45°) = \/5_1:(\/5_1 —2-43= t_
1+4/3  3-1 2+4/3

12

In some ways, the pdf f(x) couldn’t be much simpler, consisting of just two horizontal straight-
line segments (in the non-zero part). Part (i) is then relatively routine — use “total prob. = 1” to
find the value of k, before proceeding to find E(X); and the trickiest aspect of (ii) is in the
inequalities work. You also need to realise that the median could fall in either of the two non-zero
regions. For (iii), it is necessary only to follow through each possible value of M relative to E, the
expectation.

Since the pdf is only non-zero between 0 & 1, and the area under its graph = 1, if a, b are both <
(>) 1 then the total area will be < (>) 1. Since we are given that a > b, it must be the case that
a>1and b<l

¢ « 1 K 1 _
(i)1=jf(x)dx: jadx+ jbdx = [ax] + [bx] =ak+b-bk = k=10
0 0 k 0 K a-b
1 k 1 274 2 2 9
E() = [xF(dx= [axdx+ [bxax = | 20| 4| 2017 - 20, b DC
0 0 k 2 |, 2 |, 2 2 2

+(a—b)x(1—bjz _ ba—b’+1-2b+b> _1-2b+ab

b
2 2 a-b 2(a—b) 2(a—b) -

a—ab

(i) If ak> 5 (i.e. M € (0, k)) then . >l = 2a-2ab>a-b = a+b>2ab

and aM = % or M:i.
2a

If ak <+ (i.e. M e (k, 1)), and noting that this is equivalentto a+ b <2ab,

then ak+(M—kb= 3 or (1-Mb=3 = |v|=1-2—1b

2 2
(ifi) If a+b>2ab, then z—M = 1-2b+ab 1 _ a—2ab+a‘b—a+b _ b(1-a) >0
2(a—b) 2a 2a(a—D) 2a(a—h)

and the required result follows.

1—2b+ab_l+i: b—2b%+ab?-2ab+2b*+a-b
2(a—b) 2b 2b(a—b)

_a(l-b)?

~ 2b(a-b)

If a+b< 2ab,then u—M=

>0 as required.
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This question is really little more than examining the various cases that arise for each outcome and
then doing a little bit of work algebraically. The result of part (i) is somewhat counter-intuitive, in
that Rosalind should choose to play the more difficult opponent twice, while one intutively feels
she should be playing the easier opponent. The real issue, however, is that she needs to beat both
opponents (and not just win one game): examining the probabilities algebraically makes this very
obvious. Part (ii) is a nice adaptation, where there is a cut-off point separating the cases when one
strategy is always best from another situation when either strategy 1 or 2 can be best. Here, it is
most important to demonstrate that the various conditions hold, and not simply state a couple of
probabilities and hope they do the job. [It is perfectly possible to do (iii) by “trial-and-error”, but I
have attempted to reproduce below an approach which incorporates a method for deciding the
matter.]

(i) P(Weeq) = P(Wp Wq —) + P(Lp Wq Wp) =p . 0. 1+ (1-p)ap = pa(2 - p).
Similarly, P(Weqq) = pq(2 - q) and P(Weeq) — P(Weqq) = pd(q —p) >0 since g >p. Thus,
P(Wepg) > P(Wpqo) for all p, g and “Ros plays Pardeep twice” is always her best strategy.

(II) SI: P(Wl) = P(WQ Wp ——) + P(WQ Lp Wp —) + P(WQ Lp Lp Wp)
=pqg + pg(L - p) + pa(l - p)* or pg(3-3p+p?)
SII: P(Ws) = pq(3 - 3q + g°) similarly.
SII: P(W.) = P(Wp Wq — =) + P(Lp Wp Wo =) + P(Wp Lo Wo =) + P(Lp Wp Lo Wo)

=pgq+pq(l-p) +pa(l-q)+pa(l-p)(l-0q)
=pqg(4-2p-2q+pq) or pa2-p)(2-q).

P(W1) — P(W3) = pg(q—p)(3—[p+q]) >0 since g>p and p + q <2< 3so that Sl is
always better than S3

P(W1) - P(W2) = pg(p? - p—1- pg+29) = pq((2- p)(@- p)-(1- p))
1-p _, 1

> 0 whenever g-p > .
qg-p 2-p 2-1p

Now p+ 5 <q<1l = 0<p<3; = §<1—2l < 3, so that Sl always better than S|

when q-p> 1.

P(W1) —=P(W,)><0 < q—p><1_—

2-p
Take p=$,0=3 = q-p=% <3 and ;_—:%>% so Sl is better than SI.
—-p
Take p=1,0=2-¢ = q-p=3-¢<3 and ;_—p:% so choosing
e<2-2=2L (say ;z)willgivep=4,q= 1 and q—p:%>;_—=% so that
-p

Sl is better than SII.

[I believe that q—p >k has k = $ as the least positive k which always gives Sl better than Sll,
but it is a long time ago that the problem was originally devised and | may be wrong.]




STEP Mathematics 111 2010: Solutions
Section A: Pure Mathematics

1. The first two parts are obtained by separating off the final term of the summation and
expanding the brackets respectively giving C = ﬁ (nA + x,,41), and
n

1
B:_Z 2_A2
n X1

k=1
(the latter given in the question) .
By comparison with the expression for B,
5 1 n+1 , CZ
Thtr1lk
- - - k=1
which by substituting for
n
1
- 2
PR
k=1

from the expression for B gives

1
D =n+1[n(B + A?%) + x,,1%] — C?

Substituting for C from the initial result, the required expression can be obtained which can most
neatly be written

n
D=y [(n+ DB + (4 — x,41)%]

Thus (n + 1)D = nB + —— (A — x,,)? yielding the first inequality.

n
(n+1)2
only if (A4 — x,41)? < ”T“B.
Rearranging the inequality to make x,.+1 the subject yields the required result.

Also,D — B =

(A—x,41)% — ﬁB and this quadratic expression is only negative if and

2. The expression of cosh a in exponentials enables the integral to be written as
1

1
d
fx2+x(ea+e‘a)+1 x

0
which can in turn can be expressed as
1

1
J (x+ev)(x+e2) dx

0
and so employing partial fractions this is
1

(e@ —1e‘a) [ln (xx-l-_l-ee_aaﬂo




The evaluation of this with simplification of logarithms yields

1 l < L1t ea)
2sinha me 1+ e
giving the required result.

In part (ii), the same technique can be employed for both integrals giving, in the first case
[ erme—e
(x+e¥)(x—e9) x
1

X —e"

- (e@ —I—le‘“) [ln ( x + eaa)]l

= > colsh 7 <a +In (coth %))

and in the second
f 1 d
(x2+e2)(x2+e79) x
0

e () e ()]
= — an™!| — | - —Ftanl (=
(e®—e™%) e_% e_% e% e%

1
- 2sinha (E 2 sinh E)

or alternatively
T

a
4 cosh >

3. The two primitive 4™ roots of unity are +i 50 C,(x) = (x — )(x + i) = x2 + 1

Cx)=x—-1,x2-1=((x-1(x+1) s0 C(x) =x+1,
x3-1=@x-1DE%*+x+1)s0 Gx)=x?+x+1
xP—1=(x—-D*+x3+x2+x+1) s0 Cs(x) =x*+x3+x2+x+1
x-1=@-D3+1D) =03 -DEx+1Dx?2—x+1) so Cg(x)=x?2—x+1

In part (i), C,,(x) = 0 = x* = —1 = x8 = 1 sonis amultiple of 8, and as there are 4 primitive
8" roots of unity, n must be 8.

xP=12xP-1=0=2(x - 1DP 1+ xP 2 +xP 3 +..-4+1)
1 is the only non-primitive root as no power of any other root less than the p™ equals unity,
because p is prime, s0 C,(x) = xP~1 4+ xP72 4+ xP73 4. 4+ 1

No root of C,(x) = 0isarootof C;(x) =0 foranyt # n. (Forift < n, by the definition of
C,(x), there is no integer t such that a® = 1 when a™ = 1. Similarly, if t > n.)

Thus if C,(x) = C.(x)Cs(x), and if C,(x) = 0, then C,.(x) = 0 or Cs(x) =0, s0

q=r1 0orq=s.



If g =r,then Cy(x) = C.(x), and so C;(x) = 1 which is not possible for positive s, and
likewise in the alternative case.

4. (i) As «a satisfies both equations, a? + aa + b = 0 and a? + ca + d = 0, so subtracting

these the desired result is simply found.

If (b—d)?—a(b—d)(a—c)+ b(a—c)? =0, then we may divide by (a — ¢)?, and find that
Eb_di satisfies x* + ax + b = 0. Butalso,

(ﬁ’l—g) +c(—$_—g)+d=(%) ta(-F5)+b+(c-a)(-=2)+@-b)and
SO — EZ disatlsflesx +cx+d=0.

On the other hand if there is a common root, then it is found at the start of the question and as it
satisfies a? + aa + b = 0, the required result is found.

If (b—d)?—a(b—-d)(a—c)+bla—c)>=0 and a = c, then b = d and so the two
equations are one and trivially have a common root. Alternatively, if there is a common root and
a = c, then the initial subtraction yields b = d, and so the result is trivially true.

(i) f(b—1)2—a(b—-r)a+b—q)+bla+b—q)*>=0,thenx?>+ax+b =0 and

x%+ (q — b)x +r = 0 have acommon root from (i), and so then do x? + ax + b = 0 and
x(x? + ax + b) + x2 + (q — b)x + r = 0 which is the required result.

On the other hand, if the two equations have a common root a, then a? + aa + b = 0

and a3 + (a + 1)a? + qa + r = 0, and thus so does

a3+ (a+ 1a? + qa + r — a(a? + aa + b) = 0 which is a quadratic equation and we can use
the result from (i) again.

Using = g ,q = g T = % , in the given condition, we obtain a cubic equation in b,

b3 — %bz + ib + % = 0, which has a solution b = 1, meaning the other two can be simply

obtained as b = %\/5.

5. The line CP can be shown to have equation (1 —n)y = x —an and so R is (0, ;—")

-1
So, similarly, S must be (% 0).

Thus RS has equation n(m — 1)x + m(n — 1)y = amn and PQ has equation mx + ny = amn.
As the coordinates of T satisfy both equations, they satisfy their difference which is

(mn—n—m)(x +y) = 0. As RS and PQ intersect, - ;t m((n Y which yields

(m —n)(mn —m —n) # 0 and hence (mn —m — n) 0 |mply|ng that T’s coordinates
satisfy x + y = 0 giving the desired result. (Alternatively, mn—m-n=0&n=-—"-<0,

which is a contradiction.)

The construction can be achieved more than one way, but one is to label the given square ABCD
anti-clockwise, choose points on AB and AD different distances from A, label them P and Q,
construct CP and CQ, and find their intersections with AD and AB, R and S, respectively, and
find the intersection of PQ and RS, label it T, then TA is perpendicular to AC. Rotating the
labelling through a right angle and repeating three more times achieves the desired square.




6. P, is (cos¢,sing,0), P, is (cos¢ cosA,sin¢@ cosA,sinl), Q, is (—sin¢,cos¢,0), Q, is
(—sin¢,cos¢,0), R, is (0,0,1) and R, is (—cos @ sin A, —sin @ sin 4, cos 1).
The scalar product OP, - OP, gives the quoted result immediately. The direction of the axis can

1 cos ¢ cos A
be found from the vector product (0) X (sin @ cos /1) giving the direction of the axis as

0 sin A
0
(— sin >
sin ¢ cos 4

7. The initial result can be obtained by differentiating y directly twice obtaining

ay _ . L1 m

ar = —sin(msin™! x) @

2 — _ cos(msin~? *— and substituting into the LHS.
dx?

(1-x2)2
(Slightly more elegant is to rearrange as cos™! y = msin~! x, differentiate and then square to

2
obtain (1 — x?) (%) = m?(1 — y?) and then differentiate a second time.)
The two similar results are (1 — xz)z 3xd 4 =+ (m? — 1)‘;—1 =0and
X2 d*y d3y 2 d?y .
1- )— —5x—=+(m* - 4)— = 0, which lead to the conjecture
(1- 2) s (Zn + 1)x

xnt1

Y+ (m? —n?) % = 0 which is proved simply by induction.

2 3
Using = 0, we find that y = ,Z—Z= ,%= —m?, ng_o %—mz(m —4)
2 2
and so the Maclaurin series commencesy = 1 — %xz + ("; 2 )
Now replacing x by sin 9,
2 2 2_92 _92
cosm@—l—r;l'x2+% 44 —1——sm 0+Msm 0+ -
All the odd differentials are zero, and the even ones are (—1)**1m2(m? — 22) ... (m? — (2k)?),

so if m is even all the terms are zero from a certain point (when m = Zk) and thus the series
terminates and is a polynomial in sin 6, of degree m.

8. Substituting for P(x), the desired integral is seen to be the reverse of the quotient rule, i.e.

R(x) 4

Q(x)
To choose a suitable function R(x) in part (i), substitution of R(x) = a + bx + cx? and
Q(x) =1+ 2x + 3x2 in the given expression yields a quadratic equation, and equating the
coefficients of the powers of x gives 5 = =3b+ 2c,—2=—-3a+c,—-3=—-2a +b.
These three equations are linearly dependent and so their solution is not unique.

Choosing, forexample a =0,=—-3,c=—-2andthen a=1,b = —1, ¢ = 1 gives solutions
. 1-x+x? 1+2x+3x%2-3x—2x2 -3x-2x2 .
which are related by ———— = T2 "2 1 4 2 e the same bar the
1+2x+3x2 1+2x+3x2 1+2x+3x2

arbitrary constant.



(sinx—2cosx) (5-3 cosx+4sinx)

(if) Rearranging the equation to be solved as — + y= ——, the
(1+cosx+2sinx) (1+cosx+2sinx)
f (sinx—2 cosx) 1
integrating factor is e’ (+cosx+zsinn™" = e‘ln(“c"sx”sm") =
1+cosx+2sinx

(5-3 cosx+4sinx)

(1+cos x+2 sin x)2

Repeating similar working to part (i), except with Q(x) = 1 + cosx + 2 sin x and

R(x) = a + bsinx + c cos x, gives three linearly dependent equations,
5=b—-—2c,-3=b—-2a,4=a-c

Choosinge.g. =4,b=5,c =0, thesolutionisy =4 + 5sinx + k(1 + cosx + 2 sinx)

As a result, the RHS we require to integrate is

Section B: Mechanics

muv?

9. Resolving radially inwards for the mass P, mgsinf —R = —,

where R is the normal reaction of the block on P, and v is the (common) speed of the masses
when OP makes an angle 6 with the table.

Conserving energy, %mvz + %Mv2 + mgasinf — Mga® = 0, and making v? the subject of

this formula to substitute in the first equation re-arranged for R,

2mg(MO—msin@) _ mg((3m+M)sin 6-2M0)
m+M - m+M -

Remaining in contact requires this expression to be non-negative forall ,0 <6 < >

R =mgsinf — is found.

Considering the graphs of y = asinfandy = b8 for 0 <0 < g

asind —bf >0,v0,0 < 0 Sg if and only if asin® — b6 > 0 for 6 =§

SOR>0 forall9,0 <6 < g if and only if (3m + M) sing— 2M§ > 0 which gives the
required result.

10. Resolving perpendicularly to OB, ma¢ = —T cos G -0 qb) , Where the tension in the

T PB- . PB
elastic string is T = A—. The sine rule — = —
c sin @ sin ¢

Putting these three results together gives the required expression

. b
Also from the sine rule, S0 — sng’ so for ¢p and 6 smaII — = yleldlng the desired

result.
From this result, & may be made the subject of the formula, so that the result

mag = -1 (% - 1) sin(@ + ¢), which for small angles becomes

mad ~ —1 (% - ) (6 + ¢) can be written ¢ ~ — - (b_a_c) (ﬁ) ¢

ma Cc
and hence the period is T ~ 27 /w.
Ab(b—a—c)




11. If the acceleration of the block is a’ , and the acceleration of the bullet is a’’, then
R—u(M+m)g =Ma'and —R = ma'"’,

. . R R—u(M+
so the relative acceleration a = a’ —a" = —+ ”(Tm)g

The initial velocity of the bullet relative to the block is - u and the final velocity of the bullet
relative to the block is 0. If the time between the bullet entering the block and stopping moving

through the block is T, then using” v =u+at “,0 = —u + (% + W) T

For the block, the initial velocity is 0, the final velocity is v , and again using v = u + at ,

_ _ R—u(M+m)g u
v=aT=—/ rres and so
( ) (E+ ( s ) ) ( )
_ (R | R—p(M+m g) R—u(M+m)g u __ Ru—uM+m)gu .
av = (m + y o (§+R‘”(M+m’9) = as required.

If the distance moved by the block whilst the bullet is moving through the block is s,
v2 Mv? _ Mv? _ ww

2a’ T 2(R-u(M+m)g) ~ M2 T 24
u

using” v2 = u? + 2as “, v? =2a’sandso s =

Once the bullet stops moving through the block, the next initial velocity of block/bullet is v, the
final velocity is 0, the acceleration is - ug, so the distance moved s’using

2
“p2 = y? 4 2as” isgiven by 0 = v2 — 2ugs’ ie. s’ = —

2ug
. . uv v? v
Thus the total distance moved is — + — = [ugu + av]
2a 2ug 2uga
v Ru—u(M+m)gu]
" 2uga [,ugu + M
_ v [R-pmg]
T 2ugl Ma
__ uv [R—umg] 1
T ougl M | R R-pMimyg
m M
_ uv [R—umg] Mm _ muv
2ugl M 1 (M+m)(R-umg)  2(M+m)ug

2
If R < (M + m)ug, then the block does not move, and the bullet penetrates to a depth %.

Section C:  Probability and Statistics

12. S—rS=1+dr+dr?+--+dr™+ - whichis 1 plus an infinitt GP. Summing that GP
and making S the subject produces the displayed result.

E(A) =1a+2(1-a)a+3(1—a)a+ --+n(1l—a)*ta+-- somaking use of the first

. _ _ _ . 1 (1-a) _ l 1—_a _ l
resultwithd = 1,7 = (1 —a), E(4) = a{l—(l—a) + (1_(1_a))2} B a{a T } T a




a=a+(1—-a)(1—-b)a=a+a'b'aoralternatively,a = a +a'b'a + a'*b"*a + -+ which
both lead to the required result.

— 1 _ —_ a'b H o 1237 13112 L — a'b
f=1—-a= oy OF alternatively, 8 =a’'b+a'“b'b+a'"b'“b + -+ = =o'y
The expected number of shots, S, is given by
E(S) =1la+2a'b+3a’b'a+ 4a’*b'b + 5a’°b"*a + -
=a{l+3a'b’ +5a"°b'* + -} + 2a’b{1 + 2a'b’ + -}
. . s . 1 2a’'p’ , 1 a'p’
which using the initial result of the question = a [1_a,b, + (1_a,b,)2] + 2a'b [1_a,b, + (1_a,b,)2]

and can be shown to simplify to the required expression.

13. Corr(Z,,Z,) =0
1 1
E(Y;) =E (P1ZZ1 +1- P%z)gzz) = p12E(Z) + (1 = p},)2E(Z;) = 0
1
Var(Y;) = Var (P1ZZ1 +(1- sz)fzz) = piVar(Zy) + (1 — pi)Var(Z,)
=phL+ (1 —pf) =1

AsE(Y;) =E(Y,) =0andVar(Y;) =Var(Y,) =1,

_ COV(Yl,Yz) _ _ _
Corr(Yy,Y;) = —Var(YI)Var(YZ) = Cov(Yy,Y,) = E(V1Y,) — E(Y))E(Y;)

1 1
=E (P1ZZ12 +(1- .0122)52122) = ppVar(Zy) + (1 — .0122)55(21)5(22) = P12

Var(Y;) =1 implies a? + b?> +c?2 =1
Corr(Y,,Y;) = p;3 implies a = p,5 as seen before.

1
Corr(Y,,Y3) = pps implies pipa + (1= pfy)2b = pyy

- — 2
and hence a = D13, b= P23 P1zpl13 c= |1- p123 _ (p23 P122P13)
2.\2 (1-p2)
(1-p12)?

Xi = U; + O-iYi for i = 1,2,3 as E(Xl) = E(‘Lll + O-iYi) = E(‘Lll) + E(O'lYl) = U; + O'lE(Yl) = Ui,
Var(X,) = Var(u; + 0;Y;) = Var(a;Y;) = 6?Var(Y;) = o7, and
Corr(X;,X;) = Corr(Y;,Y;) = p;; as a linear transformation does not affect correlation.
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