STEP 2009, Paper 3, Q8 - Solution (2 pages; 7/6/18)
(i) [Investigating $t=\ln x$ leads to $x \rightarrow \infty$ as $t \rightarrow \infty$]

Let $t=-\ln x$, so that $x \rightarrow 0$ as $t \rightarrow \infty$
Then $\lim _{x \rightarrow 0} x^{m}(\ln x)^{n}=\lim _{t \rightarrow \infty} e^{-m t}(-t)^{n}=(-1)^{n} \lim _{t \rightarrow \infty} e^{-m t} t^{n}=0$
$\lim _{x \rightarrow 0} x^{x}=\lim _{x \rightarrow 0} e^{x \ln x}$ and $\lim _{x \rightarrow 0} x \ln x=0$, on setting $m=n=1$ in the previous result

So $\lim _{x \rightarrow 0} e^{x \ln x}=e^{\lim _{x \rightarrow 0} x \ln x}=e^{0}=1$
Thus $\lim _{x \rightarrow 0} x^{x}=1$
(ii) $I_{n}=\int_{0}^{1} x^{m}(\ln x)^{n} d x$

By Parts, $I_{n+1}=\int_{0}^{1} x^{m}(\ln x)^{n+1} d x=\lim _{a \rightarrow 0}\left[\frac{1}{(m+1)} x^{m+1}(\ln x)^{n+1}\right]_{a}^{1}$
$-\int_{0}^{1} \frac{1}{(m+1)} x^{m+1}(n+1)(\ln x)^{n}\left(\frac{1}{x}\right) d x$
$=(0-0)[$ by the 1 st result $]-\frac{n+1}{m+1} \int_{0}^{1} x^{m}(\ln x)^{x} d x$
$=-\frac{(n+1)}{(m+1)} I_{n}$
Then $I_{n}=\left(-\frac{n}{m+1}\right)\left(-\frac{(n-1)}{(m+1)}\right) \ldots\left(-\frac{1}{m+1}\right) I_{0}$
$I_{0}=\int_{0}^{1} x^{m} d x=\left[\frac{1}{m+1} x^{m+1}\right]_{0}^{1}=\frac{1}{m+1}$
Hence $I_{n}=\frac{(-1)^{n} n!}{(m+1)^{n+1}}$
(iii) $\int_{0}^{1} x^{x} d x=\int_{0}^{1} e^{x \ln x} d x$
[In order to see how to proceed from here, we can compare
$-\left(\frac{1}{2}\right)^{2}$ and $\left(\frac{1}{3}\right)^{3}$ with $\frac{(-1)^{n} n!}{(m+1)^{n+1}}$
$m=1 \& n=1$ gives $-\left(\frac{1}{2}\right)^{2}$
and $m=2 \& n=2$ gives $\left(\frac{1}{3}\right)^{3} 2$!
This pattern works for the other terms as well.]
Let $f(n)=\frac{(-1)^{n} n!}{(m+1)^{n+1}}$
Then we want to show that $I=\int_{0}^{1} e^{x \ln x} d x=\sum_{n=0}^{\infty} \frac{f(n)}{n!}$
Now $\sum_{n=0}^{\infty} \frac{f(n)}{n!}=\sum_{n=0}^{\infty} \frac{I_{n}}{n!}$, with $m=n$
$=\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^{n}(\ln x)^{n}}{n!} d x=\int_{0}^{1} \sum_{n=0}^{\infty} \frac{(x \ln x)^{n}}{n!} d x=\int_{0}^{1} e^{x \ln x} d x$,
as required
[It's worth checking that we haven't missed something though, as the result $\lim _{x \rightarrow 0} x^{x}=1$ hasn't been used.]

