STEP 2009, Paper 3, Q7-Solution (3 pages; 7/6/18)
(i) Proof by induction:
$f_{1}(x)=\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)=-\left(1+x^{2}\right)^{-2}(2 x)$
$f_{2}(x)=\frac{d}{d x} f_{1}(x)=2\left(1+x^{2}\right)^{-3}(2 x)(2 x)-\left(1+x^{2}\right)^{-2}(2)$
Then $\left(1+x^{2}\right) f_{2}(x)+2(1+1) x f_{1}(x)+1(1+1) f_{0}(x)$
$=8\left(1+x^{2}\right)^{-2} x^{2}-2\left(1+x^{2}\right)^{-1}-8 x^{2}\left(1+x^{2}\right)^{-2}+2\left(1+x^{2}\right)^{-1}$
$=0$
Thus the result is true for $n=1$.
Assume that the result is true for $n=k$,
so that
$\left(1+x^{2}\right) f_{k+1}(x)+2(k+1) x f_{k}(x)+k(k+1) f_{k-1}(x)=0$
Result to prove:
$\left(1+x^{2}\right) f_{k+2}(x)+2(k+2) x f_{k+1}(x)+(k+1)(k+2) f_{k}(x)=0$
Differentiating (1):
$2 x f_{k+1}(x)+\left(1+x^{2}\right) f_{k+1}^{\prime}(x)+2(k+1) f_{k}(x)$
$+2(k+1) x f^{\prime}{ }_{k}(x)+k(k+1) f^{\prime}{ }_{k-1}(x)=0$
$\Rightarrow 2 x f_{k+1}(x)+\left(1+x^{2}\right) f_{k+2}(x)+2(k+1) f_{k}(x)$
$+2(k+1) x f_{k+1}(x)+k(k+1) f_{k}(x)=0$
$\Rightarrow\left(1+x^{2}\right) f_{k+2}(x)+f_{k+1}(x)\{2 x+2(k+1) x\}$
$+f_{k}(x)\{2(k+1)+k(k+1)\}=0 \Rightarrow$
$\left(1+x^{2}\right) f_{k+2}(x)+2(k+2) x f_{k+1}(x)+(k+1)(k+2) f_{k}(x)=0$, and this is the required result for $n=k+1$

So, if the result is true for $n=k$, then it is true for $n=k+1$. As it is true for $n=1$, it is therefore true for $n=2,3, \ldots$, and hence

$$
\left(1+x^{2}\right) f_{n+1}(x)+2(n+1) x f_{n}(x)+n(n+1) f_{n-1}(x)=0
$$ for all $n \in \mathbb{Z}^{+}$, by the principle of induction.

(ii) $P_{0}(x)=\left(1+x^{2}\right)\left(\frac{1}{1+x^{2}}\right)=1$

$$
\begin{aligned}
& P_{1}(x)=\left(1+x^{2}\right)^{2} \frac{d}{d x} f_{0}(x)=\left(1+x^{2}\right)^{2}(-1)\left(1+x^{2}\right)^{-2}(2 x) \\
& =-2 x
\end{aligned}
$$

$$
P_{2}(x)=\left(1+x^{2}\right)^{3} \frac{d}{d x} f_{1}(x)
$$

$$
=\left(1+x^{2}\right)^{3}\left\{2\left(1+x^{2}\right)^{-3}(2 x)(2 x)-\left(1+x^{2}\right)^{-2}(2)\right\}
$$

$$
=8 x^{2}-2\left(1+x^{2}\right)=6 x^{2}-2
$$

$$
P_{n+1}(x)-\left(1+x^{2}\right) \frac{d}{d x} P_{n}(x)+2(n+1) x P_{n}(x)
$$

$$
=\left(1+x^{2}\right)^{n+2} f_{n+1}(x)
$$

$$
-\left(1+x^{2}\right)\left\{(n+1)\left(1+x^{2}\right)^{n}(2 x) f_{n}(x)+\left(1+x^{2}\right)^{n+1} f_{n+1}(x)\right\}
$$

$$
+2(n+1) x\left(1+x^{2}\right)^{n+1} f_{n}(x)
$$

$$
=\left(1+x^{2}\right)^{n+1}\left\{\left(1+x^{2}\right) f_{n+1}(x)-2(n+1) x f_{n}(x)\right.
$$

$$
\left.-\left(1+x^{2}\right) f_{n+1}(x)+2(n+1) x f_{n}(x)\right\}
$$

$$
=0 \text {, as required (1) }
$$

Proof by induction
$P_{0}(x)=1$ is a polynomial of degree 0

Assume that $P_{k}(x)$ is a polynomial of degree k, so that $P_{k}(x)=$ $\sum_{i=0}^{k} a_{i} x^{i}$, where $a_{k} \neq 0$

Then, from (1),
$P_{k+1}(x)=\left(1+x^{2}\right)\left\{\sum_{i=1}^{k} i a_{i} x^{i-1}\right\}+2(k+1) x \sum_{i=0}^{k} a_{i} x^{i}$
The highest power is x^{k+1}, and the coefficient is
$k a_{k}+2(k+1) a_{k}$, which is non-zero for $k \geq 0$
So, if $P_{k}(x)$ is a polynomial of degree $k, P_{k+1}(x)$ will be a polynomial of degree $k+1$.

Hence, if the result is true for $n=0$, it is true for $n=1,2, \ldots$ and hence for all $n \in \mathbb{Z}, n \geq 0$, by the principle of induction.
[The official solutions suggest showing first of all that $P_{k+1}(x)$ is of degree not greater than $k+1$, and then that there is a term involving x^{k+1}, but it isn't clear why this two stage method is necessary. Also, the Examiners' report mentions that, for the last part, candidates often fell by the wayside; "especially those who attempted it by induction" (almost implying that there is a better method). But the official solution suggests using induction, and this seems to be a perfectly good way of proceeding.]

