STEP 2009, Paper 3, Q11 - Solution (2 pages; 7/6/18)

(i) Conservation of momentum $\Rightarrow MV = M(1 + bx)v$

$$\Rightarrow V = (1 + bx) \frac{dx}{dt} \Rightarrow \int V dt = \int (1 + bx) dx$$

$$\Rightarrow Vt = x + \frac{1}{2}bx^2 + c$$

$$t = 0, x = 0 \Rightarrow c = 0$$

$$\Rightarrow bx^2 + 2x - 2Vt = 0$$

$$\Rightarrow x = \frac{-2 + \sqrt{4 - 4b(-2Vt)}}{2b} \text{ (as } x > 0)$$

Thus
$$x = \frac{\sqrt{1+2bVt} - 1}{b}$$

(ii)
$$Mf = \frac{d}{dt}(M(1+bx)v)$$

$$\Rightarrow \int f dt = (1 + bx)v$$

$$\Rightarrow ft = (1 + bx)v + c$$

$$t = 0, x = 0, v = V \Rightarrow 0 = V + c \Rightarrow c = -V$$

Thus
$$ft + V = (1 + bx)v$$
 and $v = \frac{ft + V}{1 + bx}$, as required. (*)

So
$$\frac{dx}{dt} = \frac{ft+V}{1+hx}$$
 and hence $\int (1+bx)dx = \int ft + V dt$

$$\Rightarrow x + \frac{1}{2}bx^2 = \frac{1}{2}ft^2 + Vt + c$$

$$x = 0, t = 0 \Rightarrow c = 0$$

Thus
$$bx^2 + 2x - ft^2 - 2Vt = 0$$

and
$$x = \frac{-2 + \sqrt{4 - 4b(-ft^2 - 2Vt}}{b}$$
 (excluding $x < 0$ again)

So
$$x = \frac{\sqrt{1 + bft^2 + 2bVt} - 1}{b}$$
 (**)

[which agrees with the earlier result when f = 0]

Constant speed $\Rightarrow v = \frac{x}{t} = V$

Then
$$(*) \Rightarrow V = \frac{ft+V}{1+bVt} \Rightarrow V + bV^2t = ft + V$$

 $\Rightarrow bV^2 = f$; ie constant speed is possible, given this relation.

[see official sol'n for alternative method]

In the general case,

$$(**) \Rightarrow v = \frac{dx}{dt} = \frac{1}{2b} (1 + bft^2 + 2bVt)^{-\frac{1}{2}} (2bft + 2bV)$$

Consider
$$v^2 = \frac{(ft+V)^2}{1+bft^2+2bVt} = \frac{f^2t^2+2ftV+V^2}{1+bft^2+2bVt}$$

$$= \frac{f^2 + \frac{2fV}{t} + \frac{V^2}{t^2}}{\frac{1}{t^2} + bf + 2bV/t} \rightarrow \frac{f^2}{bf} \text{ as } t \rightarrow \infty$$

[the limit of a quotient equals the quotient of the limits, provided that the limits are constants; ie not functions of t (in this case)]

Thus
$$v \to \sqrt{\frac{f}{b}}$$
 (a constant).

[see official sol'n for alternative method]