STEP 2009, Paper 2, Q8 - Solution (3 pages; 5/6/18)

[According to the ER, this question was not at all popular. Although a fairly complicated diagram emerges, the problem is solved by vector methods, rather than geometry.]
[A useful device where unknown values $\lambda \& \mu$ are involved is to draw the diagram with specific values of $\lambda \& \mu$ in mind - which may help to make the problem less abstract; and in this case ensures that the diagram satisfies the given constraints on $\lambda \& \mu$.]
[Note that $\underline{p}=\lambda \underline{a}+(1-\lambda) \underline{b}$ can be written as $\underline{b}+\lambda(\underline{a}-\underline{b})$, making it clear that, when $0<\lambda<1$, P must lie between A and B. Similarly, $\underline{q}=\underline{c}+$ $\mu(\underline{a}-\underline{c})$, so that $\mu>1$ means that Q must lie on the opposite side of A from C.]

[$C Q, B P$ etc are scalar lengths; in any case, the vector product is not in the STEP 2 syllabus]
$C Q \times B P=A B \times A C \Leftrightarrow|\underline{q}-\underline{c}||\underline{p}-\underline{b}|=|\underline{a}-\underline{b}||\underline{a}-\underline{c}|$
$\Leftrightarrow|\mu(\underline{a}-\underline{c})||\lambda(\underline{a}-\underline{b})|=|\underline{a}-\underline{b}||\underline{a}-\underline{c}|$
so that $\mu \lambda= \pm 1$; then, as $0<\lambda<1 \& \mu>1, \mu=\frac{1}{\lambda}$
[Although a diagram isn't essential for the next part, we can't be sure of this in advance; and in fact it is useful for the last part. In order for the diagram to satisfy the constraint $C Q \times B P=A B \times A C$, we can (secretly) choose, for example, $\lambda=\frac{1}{2} \& \mu=2$]

In order to show that D lies on QP extended, we use the standard vector device that
$\underline{d}=\underline{p}+k(\underline{p}-\underline{q})$ for some k
[In other situations this is often beneficial: although we are introducing an extra parameter k, the vector equation can often be turned into two equations, by equating components.]
$\underline{p}+k(\underline{p}-\underline{q})=(1+k)(\lambda \underline{a}+(1-\lambda) \underline{b})-k(\mu \underline{a}+(1-\mu) \underline{c}$
$=\underline{a}([1+k] \lambda-k \mu)+\underline{b}(1+k)(1-\lambda)-k(1-\mu) \underline{c}$
In order for this to equal $-\underline{a}+\underline{b}+\underline{c}$, let $1+k=\frac{1}{1-\lambda}$, so that the coefficient of \underline{b} is correct.

Then the coefficient of \underline{a} is $\frac{\lambda}{1-\lambda}-\left(\frac{1}{1-\lambda}-1\right)\left(\frac{1}{\lambda}\right)=\frac{\lambda}{1-\lambda}-\frac{\lambda}{1-\lambda}\left(\frac{1}{\lambda}\right)$
$=\frac{\lambda-1}{1-\lambda}=-1$, as required;
and the coefficient of \underline{c} is $-\left(\frac{1}{1-\lambda}-1\right)\left(1-\frac{1}{\lambda}\right)=-\frac{\lambda}{1-\lambda}\left(\frac{\lambda-1}{\lambda}\right)=1$, as required.

From the 2nd diagram, ABDC would appear to be a parallelogram.
To prove this, we require $\underline{b}-\underline{a}=\underline{d}-\underline{c}$, and this follows from $\underline{d}=-\underline{a}+$ $\underline{b}+\underline{c}$
[also $\underline{c}-\underline{a}=\underline{d}-\underline{b}]$

