STEP 2009, Paper 1, Q2 - Solution (2 pages; 5/6/18)
$y^{3}=x^{3}+a^{3}+b^{3} \Rightarrow 3 y^{2} \frac{d y}{d x}=3 x^{2}$
so that $\frac{d y}{d x}$ at $(-a, b)=\frac{a^{2}}{b^{2}}$
and the eq' n of the tangent at this point is
$y-b=\frac{a^{2}}{b^{2}}(x-[-a]) \Rightarrow b^{2} y-b^{3}=a^{2} x+a^{3}$
$\Rightarrow b^{2} y-a^{2} x=a^{3}+b^{3}$, as required

When the tangent meets the curve (for $a=1, b=2$),
$4 y-x=9 \& y^{3}=x^{3}+9$
so that $(4 y)^{3}=(x+9)^{3} \&(4 y)^{3}=64\left(x^{3}+9\right)$
$\Rightarrow(x+9)^{3}=64\left(x^{3}+9\right)$
$\Rightarrow x^{3}(64-1)+x^{2}(-27)+x(-3)(81)+9(64-81)=0$
$\Rightarrow 7 x^{3}-3 x^{2}-27 x-17=0$, as required (2)

Putting $p=y, q=x, r=a=1 \& s=b=2$, (2) provides us with values satisfying $p^{3}=q^{3}+r^{3}+s^{3}$

We know that the tangent meets the curve when $x=-a=-1$, but as the values in (3) must be positive, we need to look for a positive root of (2).

We can write $7 x^{3}-3 x^{2}-27 x-17=(x+1)\left(7 x^{2}+k x-17\right)$
Equating coefficients of $x^{2}:-3=k+7$,
so that $k=-10$
Then $7 x^{2}-10 x-17=(7 x-17)(x+1)$
[looking for $a \& b$ such that $a+b=-10 \& a b=(7)(-17)$
ie $-17 \& 7$, and noting that, with $(7 x+\alpha)(x+\beta), \beta$ has to be 1 in order to give one of $-17 x \& 7 x]$
[The repeated root of -1 could in fact have been deduced from the fact that we have a tangent to the curve (ie rather than just a line intersecting the curve).]
Thus, $\frac{17}{7}$ is a positive root and, when $x=\frac{17}{7}, 4 y-\frac{17}{7}=1+8$, from (1), so that $y=\frac{1}{4}\left(9+\frac{17}{7}\right)=\frac{80}{28}=\frac{20}{7}$

Then, from (3), $\left(\frac{20}{7}\right)^{3}=\left(\frac{17}{7}\right)^{3}+1^{3}+2^{3}$
and hence $20^{3}=17^{3}+7^{3}+14^{3}$

