STEP 2009, Paper 1, Q1 - Solution (2 pages; 5/6/18)
(i) The following are proper factors:

A: $3,3 x 3$
B: $5,5 \times 5,5 \times 5 \times 5$
plus: factors made up of 1 from each of A \& B (eg $3 \times 5 \times 5$); ie a further $2 \times 3=6$,
but excluding $3 \times 3 \times 5 \times 5 \times 5$,
giving a total of $2+3+6-1=10$
In general, $3^{m} 5^{n}$ has $m+n+m n-1$ proper factors
If $m+n+m n-1=10$:
Suppose $m=0$: then $n=11$
Suppose $\mathrm{m}=1$: then $\mathrm{n}=5$
Suppose $\mathrm{m}=3$: then $\mathrm{n}=2$
Suppose $\mathrm{m}=4$: then $\mathrm{n}=7 / 5$ (but n has to be an integer)
Suppose $m=5$: then $n=1$
The next allowable value of n is 0 , which occurs when $\mathrm{m}=11$.
Thus there are 5 other integers satisfying the requirement.
(ii) [The number 426 may be rather off-putting, but its size actually helps to see what has to be done]

If we consider numbers with just 2 prime factors to start with, then we require $m+n+m n-1=426$ (A)

The only way that we are going to be able to find m \& n that satisfy this is if we can factorise the two sides.

Consider $(m+1)(n+1)=m n+m+n+1$

This shows that (A) can be rewritten as $(m+1)(n+1)-2=426$ and it now becomes clear that the number of proper factors can be written as $(p+1)(q+1)(r+1) \ldots-2$ in the case of more than 2 prime factors
[the expression $(m+1)(n+1)-2$ could have been used in (i), and would have been more elegant]

Thus $(\mathrm{p}+1)(\mathrm{q}+1)(\mathrm{r}+1) \ldots=428=2 \times 2 \times 107$ and 107 is prime, as it has no divisors ≤ 11 (we only need to consider divisors up to the square root of 107)

As 428 has just 3 prime factors, s, t... equal 0 , and

$$
(\mathrm{p}+1)(\mathrm{q}+1)(\mathrm{r}+1)=2 \times 2 \times 107
$$

The smallest number of the form $a^{p} b^{q} c^{r}$ will be either $2^{106} \times 3^{3}(p=106, q=3, r=0)$ or $2^{106} \times 3 \times 5(p=106, q=1, r=1)$

Of these, $2^{106} \times 3 \times 5$ is the smallest.

