STEP 2008, Paper 3, Q8 - Solution (2 pages; 5/6/18)
(i) $p=-\frac{a_{r+1}}{a_{r}}=-\frac{1}{2}$

$$
\begin{aligned}
\left(1-\frac{1}{2} x\right) S=\frac{1}{3} x & +\frac{1}{6} x^{2}+\frac{1}{12} x^{3}+\cdots \\
& -\frac{1}{6} x^{2}-\frac{1}{12} x^{3}-\cdots=\frac{1}{3} x
\end{aligned}
$$

so that $S=\frac{\frac{1}{3} x}{1-\frac{1}{2} x}=\frac{2 x}{6-3 x}$
Let $S^{\prime}$ be the sum of the first $n+1$ terms of $S$.
Then

$$
\begin{aligned}
& \left(1-\frac{1}{2} x\right) S^{\prime}=\frac{1}{3} x+\frac{1}{6} x^{2}+\cdots+\frac{1}{3}\left(\frac{1}{2}\right)^{n-1} x^{n}+\frac{1}{3}\left(\frac{1}{2}\right)^{n} x^{n+1} \\
& \quad-\frac{1}{6} x^{2}-\frac{1}{12} x^{3}-\cdots-\frac{1}{3}\left(\frac{1}{2}\right)^{n} x^{n+1}-\frac{1}{3}\left(\frac{1}{2}\right)^{n+1} x^{n+2} \\
& =\frac{1}{3} x-\frac{1}{3}\left(\frac{1}{2}\right)^{n+1} x^{n+2}
\end{aligned}
$$

so that $S^{\prime}=\frac{2 x-\left(\frac{1}{2}\right)^{n} x^{n+2}}{6-3 x}$
[which is consistent with the expression for $S$ ]
[The official sol'ns invoke the sum of a GP for this last part, despite the fact that we weren't allowed to do that for the infinite series.]
(ii) Substituting in the recurrence relation, to find $p \& q$ :
$18+8 p+2 q=0 \Rightarrow 9+4 p+q=0 \Rightarrow q=-(4 p+9)$
$\& 37+18 p+8 q=0$
so that $37+18 p-8(4 p+9)=0 \Rightarrow 14 p=-35 \Rightarrow p=-\frac{5}{2}$
and $q=1$

Consider $\left(1+p x+q x^{2}\right) T$
$=2+8 x+18 x^{2}+37 x^{3}+\cdots$
$+p x\left(2+8 x+18 x^{2}+\cdots\right)$
$+q x^{2}(2+8 x+\cdots)$
$=2+(8+2 p) x+x^{2}(18+8 p+2 q)+x^{3}(37+18 p+8 q)+\cdots$
$=2+3 x$, as subsequent coefficients are zero, from the recurrence relation
[Note the advantage of keeping the $p \& q$ in until the last moment: had we substituted their values, but made an arithmetic mistake somewhere, then the recurrence relation might have been hidden.]
Thus $T=\frac{2+3 x}{1-\frac{5 x}{2}+x^{2}}=\frac{2(2+3 x)}{2 x^{2}-5 x+2}=\frac{2(2+3 x)}{(2 x-1)(x-2)}$
To find the partial fractions,
$T=\frac{A}{2 x-1}+\frac{B}{x-2}$,
where $A(x-2)+B(2 x-1)=4+6 x$
Then $x=2 \Rightarrow 3 B=16 \Rightarrow B=\frac{16}{3}$
and $x=\frac{1}{2} \Rightarrow-\frac{3 A}{2}=7 \Rightarrow A=-\frac{14}{3}$,
so that $T=\frac{14}{3}(1-2 x)^{-1}-\frac{8}{3}\left(1-\frac{x}{2}\right)^{-1}$
Replacing the sums to infinity of these GPs with the sums of the first $n+1$ terms then gives
$\frac{14\left(1-(2 x)^{n+1}\right)}{3(1-2 x)}-\frac{8\left(1-\left(\frac{x}{2}\right)^{n+1}\right)}{3\left(1-\frac{x}{2}\right)}$

