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STEP 2008, Paper 3, Q8 - Solution (2 pages; 5/6/18)
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Let S’ be the sum of the first n + 1 terms of S.

Then
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so that S’ =

[which is consistent with the expression for S]

[The official sol'ns invoke the sum of a GP for this last part,
despite the fact that we weren't allowed to do that for the infinite
series.]

(ii) Substituting in the recurrence relation, to find p & g:
18+8p+29q=0>9+4p+q=0=>qg=—-“4p+9)
& 37+ 18p+8q =0

so that 37+18p—8(4p+9)=0=>14p=—35=>p=_§

andg =1
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Consider (1 + px + qx?)T

=2+ 8x +18x* + 37x> + -

+px(2 + 8x + 18x% + --+)

+qx*(2 +8x + )

=2+ 8+ 2p)x+x%*(18+8p + 2q) + x3(37 + 18p + 8¢q) + -

= 2 + 3x, as subsequent coefficients are zero, from the
recurrence relation

[Note the advantage of keeping the p & g in until the last moment:
had we substituted their values, but made an arithmetic mistake
somewhere, then the recurrence relation might have been
hidden.]
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To find the partial fractions,
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where A(x —2) 4+ B(2x—1) =4+ 6x

Thenx=2=>3B=16=>B=§
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Replacing the sums to infinity of these GPs with the sums of the
first n + 1 terms then gives
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