STEP 2008, Paper 3, Q13 - Solution (2 pages; 5/6/18)
E (number of rings created at the 1 st step)
$=P($ same strings $) \times 1+P($ different strings $) \times 0$
$=P(2$ nd end is from the same string as the 1st end $)$
$=\frac{1}{2 n-1}$
After the 1st step, either a ring has been created, leaving $n-1$ pieces of string, or no ring has been created, but again leaving $n-$ 1 pieces of string. So, after the 1 st step, the process starts again, with $n-1$ pieces of string.

Hence E(number of rings created by the end of the process)
$=\frac{1}{2 n-1}+\frac{1}{2(n-1)-1}+\cdots$
$=\frac{1}{2 n-1}+\frac{1}{2 n-3}+\cdots+\frac{1}{1}$
(when there is one string left, a ring has to be formed)
$=\sum_{r=1}^{n} \frac{1}{2 r-1}$ [reversing the order of the series]

Let $Y=X_{1}+\cdots+X_{n}$ be the total number of rings created, where X_{r} is the number of rings created by selecting 2 ends from r strings (so that $X_{r}=0$ or 1), so that $P\left(X_{r}=1\right)=\frac{1}{2 r-1}$

Then $\operatorname{Var}(Y)=\sum_{r=1}^{n} \operatorname{Var}\left(X_{r}\right)$
and $\operatorname{Var}\left(X_{r}\right)=E\left(X_{r}{ }^{2}\right)-\left(E\left(X_{r}\right)\right)^{2}$
$=\left\{\frac{1}{2 r-1}\left(1^{2}\right)+0\right\}-\left(\frac{1}{2 r-1}\right)^{2}$
$=\frac{(2 r-1)-1}{(2 r-1)^{2}}=\frac{2(r-1)}{(2 r-1)^{2}}$

Thus $\operatorname{Var}(Y)=2 \sum_{r=1}^{n} \frac{r-1}{(2 r-1)^{2}}=2 \sum_{r=2}^{n} \frac{r-1}{(2 r-1)^{2}}$
$\mathrm{E}($ number of rings created when $n=40)=\sum_{r=1}^{4000} \frac{1}{2 r-1}$
$=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{79999}\right)$
$=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{80000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{80000}\right)$
$\approx \ln 80000-\frac{1}{2} \ln 40000$
$=\frac{1}{2} \ln \left(\frac{80000^{2}}{40000}\right)=\frac{1}{2} \ln 160000=\ln 400=2 \ln 20 \approx 2(3)=6$
[Note that Probability (and also Mechanics) questions quite often involve parts that are nothing to do with the subject!]

