STEP 2008, Paper 2, Q7 - Solution (3 pages; 2/6/18)

[As (ii) is likely to involve a similar substitution to (i), it would help if we could identify the features of the substitution in (i) that make it work.]
(i) Let $y=u\left(1+x^{2}\right)^{\frac{1}{2}}$, so that $\frac{d y}{d x}=\frac{d u}{d x}\left(1+x^{2}\right)^{\frac{1}{2}}+\frac{2 u}{2}\left(1+x^{2}\right)^{-\frac{1}{2}} x$

Then $\frac{1}{y} \frac{d y}{d x}=x y+\frac{x}{1+x^{2}} \Rightarrow$

$$
\begin{aligned}
& \frac{d u}{d x}\left(1+x^{2}\right)^{\frac{1}{2}}+u\left(1+x^{2}\right)^{-\frac{1}{2}} x=x u^{2}\left(1+x^{2}\right)+\frac{x}{1+x^{2}} u\left(1+x^{2}\right)^{\frac{1}{2}} \\
& \Rightarrow \frac{d u}{d x}\left(1+x^{2}\right)+u x=x u^{2}\left(1+x^{2}\right)^{\frac{3}{2}}+x u \\
& \Rightarrow \int \frac{1}{u^{2}} d u=\int x\left(1+x^{2}\right)^{\frac{1}{2}} d x
\end{aligned}
$$

$\Rightarrow-\frac{1}{u}=\frac{1}{2} \frac{\left(1+x^{2}\right)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}+c$
$x=0, y=1 \Rightarrow x=0, u=1$
so that $-1=\frac{1}{3}+c$, and hence $c=-\frac{4}{3}$
and $\frac{1}{u}=\frac{1}{3}\left(4-\left(1+x^{2}\right)^{\frac{3}{2}}\right)$,
so that $y=\frac{3\left(1+x^{2}\right)^{\frac{1}{2}}}{4-\left(1+x^{2}\right)^{\frac{3}{2}}}$
(ii) The $1+x^{2}$ in the substitution in (i) was needed to combine with the $1+x^{2}$ appearing on the right-hand side of the differential equation. So this strongly suggests that a substitution of the form $y=u\left(1+x^{3}\right)^{k}$ is required here. $k=\frac{1}{3}$ has the advantage that it cancels with the 3 from the derivative of x^{3}, in the same way that the power of $\frac{1}{2}$ cancelled with the 2 from the derivative of x^{2} in (i).

A safe method is to make a substitution of $y=u\left(1+x^{3}\right)^{k}$ and see what value of k is needed (bearing in mind that the substitution in (i) worked because of the $u x$ term appearing on both sides).

Let $y=u\left(1+x^{3}\right)^{k}$,
so that $\frac{d y}{d x}=\frac{d u}{d x}\left(1+x^{3}\right)^{k}+k u\left(1+x^{3}\right)^{k-1}\left(3 x^{2}\right)$
Then $\frac{1}{y} \frac{d y}{d x}=x^{2} y+\frac{x^{2}}{1+x^{3}} \Rightarrow$
$\frac{d u}{d x}\left(1+x^{3}\right)^{k}+k u\left(1+x^{3}\right)^{k-1}\left(3 x^{2}\right)$
$=x^{2} u^{2}\left(1+x^{3}\right)^{2 k}+\frac{x^{2}}{1+x^{3}} u\left(1+x^{3}\right)^{k}$
In order for the 2 nd term on the LHS to cancel with the 2nd term on the RHS, we must have $k=\frac{1}{3}$, as expected.

Then $\frac{d u}{d x}\left(1+x^{3}\right)^{\frac{1}{3}}=x^{2} u^{2}\left(1+x^{3}\right)^{\frac{2}{3}}$
and hence $\frac{d u}{d x}=x^{2} u^{2}\left(1+x^{3}\right)^{\frac{1}{3}}$
$\Rightarrow \int \frac{1}{u^{2}} d u=\frac{1}{3} \int 3 x^{2}\left(1+x^{3}\right)^{\frac{1}{3}} d x$
$\Rightarrow-\frac{1}{u}=\frac{1}{3} \frac{\left(1+x^{3}\right)^{\frac{4}{3}}}{\left(\frac{4}{3}\right)}+c$
$x=0, y=1, u=1 \Rightarrow-1=\frac{1}{4}+c \Rightarrow c=-\frac{5}{4}$
So $\frac{1}{u}=\frac{1}{4}\left(5-\left(1+x^{3}\right)^{\frac{4}{3}}\right)$
$\Rightarrow y=\frac{4\left(1+x^{3}\right)^{\frac{1}{3}}}{5-\left(1+x^{3}\right)^{\frac{4}{3}}}$
(iii) $y=\frac{(n+1)\left(1+x^{n}\right)^{\frac{1}{n}}}{(n+2)-\left(1+x^{n}\right)^{\frac{n+1}{n}}}$
[It would seem that this is all that is needed.]

