STEP 2008, Paper 2, Q4 – Solution (2 pages; 2/6/18)

Differentiating $x^2 + y^2 + 2axy = 1$ implicitly:

$$2x + 2y\frac{dy}{dx} + 2ay + 2ax\frac{dy}{dx} = 0$$

$$\Rightarrow x + ay + \frac{dy}{dx}(ax + y) = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-(x+ay)}{ax+y}$$
, as required (provided that $ax + y \neq 0$)

Let $tan\phi$ be the gradient of the normal, and $tan\alpha$ the gradient of OP. Then, if $\alpha > \phi$, $\theta = \alpha - \phi$ [as in the diagram] and if $\phi > \alpha$, $\theta = \phi - \alpha$

So
$$\theta = |\phi - \alpha|$$
 and $\tan \theta = tan|\phi - \alpha| = |\tan(\phi - \alpha)|$

$$= \left| \frac{tan\phi - tan\alpha}{1 + tan\phi tan\alpha} \right| = \left| \frac{\frac{ax + y}{x + ay} - \frac{y}{x}}{1 + \left(\frac{ax + y}{x + ay}\right)\left(\frac{y}{x}\right)} \right|$$

$$= \left| \frac{x(ax+y) - y(x+ay)}{(x+ay)x + (ax+y)y} \right|$$

$$= \left| \frac{ax^2 - ay^2}{x^2 + y^2 + 2axy} \right|$$

$$= a|y^2 - x^2|$$
, as $x^2 + y^2 + 2axy = 1$ (given) and $a > 0$

as required

(i) If
$$y > x$$
, then $tan\theta = a(y^2 - x^2)$

Differentiating
$$\Rightarrow sec^2\theta \frac{d\theta}{dx} = 2ay \frac{dy}{dx} - 2ax$$
 (1)

Given that
$$\frac{d\theta}{dx} = 0 \& \frac{dy}{dx} = -\frac{x+ay}{ax+y}$$
,

(1) then
$$\Rightarrow y\left(-\frac{x+ay}{ax+y}\right) - x = 0$$
, since $a \neq 0$

$$\Rightarrow$$
 $y(x + ay) + x(ax + y) = 0$

$$\Rightarrow a(x^2 + y^2) + 2xy = 0$$
, as required

If y < x, then
$$\sec^2\theta \frac{d\theta}{dx} = -(2ay\frac{dy}{dx} - 2ax)$$
,

but $\frac{d\theta}{dx} = 0$ produces the same result.

[For (ii), it isn't immediately obvious how to proceed. It might be necessary, for example, to differentiate again. But if in doubt just use the immediately preceding result.]

(ii)
$$(1+a)(x^2+y^2+2xy) = a(x^2+y^2) + 2xy + x^2 + y^2 + 2axy$$

$$= 0 + 1 = 1$$
, from (i) & $x^2 + y^2 + 2axy = 1$ (given)

(iii) As
$$tan\theta = a|y^2 - x^2|$$
, $tan\theta = \frac{a}{\sqrt{1-a^2}} \Leftrightarrow (y^2 - x^2)^2 = \frac{1}{1-a^2}$
(2)

LHS of (2) =
$$(x + y)^2 (y - x)^2 = (x^2 + y^2 + 2xy)(y^2 + x^2 - 2xy)$$

= $\frac{1}{1+a}(y^2 + x^2 - 2xy)$, from (ii) (3)

[Consider the other equations not yet used:]

Consider

$$x^2 + y^2 + 2axy = 1$$
 (given) (4)

and
$$a(x^2 + y^2) + 2xy = 0$$
 (from (i)) (5)

Write
$$u = x^2 + y^2 \& v = 2xy$$
.

Then (4) & (5) become
$$u + av = 1$$
 (6) & $au + v = 0$ (7)

[We need to find an expression for $y^2 + x^2 - 2xy = u - v$]

(6) & (7)
$$\Rightarrow u + a(-au) = 1 \Rightarrow u = \frac{1}{1-a^2} \& v = -\frac{a}{1-a^2}$$

Hence
$$y^2 + x^2 - 2xy = u - v = \frac{1}{1 - a^2}(1 + a)$$

Then, from (3), the LHS of (2) becomes $\frac{1}{1-a^2}$, as required.