STEP 2008, Paper 2, Q3 – Solution (2 pages; 2/6/18)

(i)
$$y = 27x^3 - 27x^2 + 4$$

 $\frac{dy}{dx} = 81x^2 - 54x = 27x(3x - 2)$
 $\frac{dy}{dx} = 0 \Rightarrow x = 0 \text{ or } x = \frac{2}{3}$
 $x = \frac{2}{3} \Rightarrow y = 8 - 12 + 4 = 0$

So turning points are $(0,4) \& (\frac{2}{3},0)$

From the graph, when $x \ge 0$, $27x^3 - 27x^2 + 4 \ge 0$ $\Leftrightarrow 27x^2(x-1) \ge -4$ $\Leftrightarrow x^2(1-x) \le \frac{4}{27}$, as required.

fmng.uk

Suppose that all of the numbers are $> \frac{4}{27}$ (*)

Then $bc(1-a) > \frac{4}{27}$ and $a^2(1-a) \le \frac{4}{27}$ (from the previous result), so that $bc(1-a) > a^2(1-a)$, and hence $bc > a^2$ Similarly, $ca > b^2$ & $ab > c^2$

Multiplying these 3 inequalities together, $(bc)(ca)(ab) > a^2b^2c^2$, which gives the contradiction $a^2b^2c^2 > a^2b^2c^2$

Hence (*) is not true, and at least one of the numbers is $\leq \frac{4}{27}$, as required.

(ii) Consider $x(1-x) \le \frac{1}{4}$ ie $-4x^2 + 4x \le 1$ or $4x^2 - 4x + 1 \ge 0$ or $(2x-1)^2 \ge 0$ Thus $x(1-x) \le \frac{1}{4}$ is true for all x (**) Suppose then that $p(1-q) \And q(1-p)$ are both $> \frac{1}{4}$ Then p(1-q) > q(1-q), by (**), so that p > q

Also q(1-p) > p(1-p), by (**), so that q > p, which gives a contradiction, and hence at least one of p(1-q) & q(1-p)

 $is \leq \frac{1}{4}$