STEP 2008, Paper 2, Q3 - Solution (2 pages; 2/6/18)
(i) $y=27 x^{3}-27 x^{2}+4$
$\frac{d y}{d x}=81 x^{2}-54 x=27 x(3 x-2)$
$\frac{d y}{d x}=0 \Rightarrow x=0$ or $x=\frac{2}{3}$
$x=\frac{2}{3} \Rightarrow y=8-12+4=0$
So turning points are $(0,4) \&\left(\frac{2}{3}, 0\right)$

From the graph, when $x \geq 0,27 x^{3}-27 x^{2}+4 \geq 0$
$\Leftrightarrow 27 x^{2}(x-1) \geq-4$
$\Leftrightarrow x^{2}(1-x) \leq \frac{4}{27}$, as required.

Suppose that all of the numbers are $>\frac{4}{27}\left({ }^{*}\right)$
Then $b c(1-a)>\frac{4}{27}$ and $a^{2}(1-a) \leq \frac{4}{27}$ (from the previous result), so that $b c(1-a)>a^{2}(1-a)$, and hence $b c>a^{2}$ Similarly, $c a>b^{2} \& a b>c^{2}$

Multiplying these 3 inequalities together, $(b c)(c a)(a b)>a^{2} b^{2} c^{2}$, which gives the contradiction $a^{2} b^{2} c^{2}>a^{2} b^{2} c^{2}$ Hence $\left(^{*}\right)$ is not true, and at least one of the numbers is $\leq \frac{4}{27}$, as required.
(ii) Consider $x(1-x) \leq \frac{1}{4}$
ie $-4 x^{2}+4 x \leq 1$ or $4 x^{2}-4 x+1 \geq 0$
or $(2 x-1)^{2} \geq 0$
Thus $x(1-x) \leq \frac{1}{4}$ is true for all $x\left({ }^{* *}\right)$
Suppose then that $p(1-q) \& q(1-p)$ are both $>\frac{1}{4}$
Then $p(1-q)>q(1-q)$, by $\left({ }^{* *}\right)$, so that $p>q$
Also $q(1-p)>p(1-p)$, by $\left({ }^{* *}\right)$, so that $q>p$, which gives a contradiction, and hence at least one of $p(1-q) \& q(1-p)$ is $\leq \frac{1}{4}$

