STEP 2008, Paper 2, Q1 - Solution (2 pages; 2/6/18)
(i) In order for the 2 nd term to equal the 1 st term,
$x_{1}{ }^{2}-y_{1}{ }^{2}+1=x_{1}$ (A) \& $2 x_{1} y_{1}+1=y_{1}$
(B) $\Rightarrow y_{1}\left(1-2 x_{1}\right)=1$

Then $(\mathrm{A}) \Rightarrow x_{1}{ }^{2}-x_{1}+1=\frac{1}{\left(1-2 x_{1}\right)^{2}}$
$\Rightarrow\left(x_{1}{ }^{2}-x_{1}+1\right)\left(1-4 x_{1}+4 x_{1}{ }^{2}\right)=1$
$\Rightarrow x_{1}{ }^{2}-4 x_{1}{ }^{3}+4 x_{1}{ }^{4}-x_{1}+4 x_{1}{ }^{2}-4 x_{1}{ }^{3}+1-4 x_{1}+4 x_{1}{ }^{2}=1$
$\Rightarrow x_{1}\left(4 x_{1}{ }^{3}-8 x_{1}{ }^{2}+9 x_{1}-5\right)=0$
As $x_{1}=1$ is a root of $4 x_{1}{ }^{3}-8 x_{1}{ }^{2}+9 x_{1}-5=0$, this can be written as $x_{1}\left(x_{1}-1\right)\left(4 x_{1}{ }^{2}-4 x_{1}+5\right)=0$

Then, as the quadratic has no real roots, $x_{1}=0$ or 1
and, from (B), the required values of $\left(x_{1}, y_{1}\right)$ are
$(0,1)$ and $(1,-1)$, as the 3 rd term will equal the 2 nd term etc, by repeating the process exactly as before, so that the sequence is constant.
(ii) If $\left(x_{1}, y_{1}\right)=(-1,1),\left(x_{2}, y_{2}\right)=(a, b)$
and $\left(x_{3}, y_{3}\right)=\left(a^{2}-b^{2}+a, 2 a b+b+2\right)$
A necessary condition for the period to be 2 is that
$\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)$,
so that $a^{2}-b^{2}+a=-1(C) \& 2 a b+b+2=1$ (D)
$(D) \Rightarrow b(2 a+1)=-1$
Then $(C) \Rightarrow a^{2}+a+1=\frac{1}{(2 a+1)^{2}}$
$\Rightarrow\left(a^{2}+a+1\right)\left(4 a^{2}+4 a+1\right)=1$
$\Rightarrow 4 a^{4}+4 a^{3}+a^{2}+4 a^{3}+4 a^{2}+a+4 a^{2}+4 a+1=1$
$\Rightarrow a\left(4 a^{3}+8 a^{2}+9 a+5\right)=0$
As $a=-1$ is a root of $4 a^{3}+8 a^{2}+9 a+5=0$,
this can be written as $a(a+1)\left(4 a^{2}+4 a+5\right)=0$
Then, as the quadratic has no real roots, $a=0$ or -1
If $a=0, b=-1$, from (D), and if $a=-1, b=1$
In the latter case, the 1 st 3 terms are equal, so that the sequence doesn't have period 3.

When $a=0 \& b=-1$, the 1st two terms are different. Also, the 4th term will be (a, b), as the 3rd term equals the 1st term, which produced (a, b) as the next term; and so on.

Thus $a=0 \& b=-1$.

