STEP 2008, Paper 2, Q10 – Solution (2 pages; 2/6/18)

At X, along the surface: $v\cos\beta = u\sin\alpha$ (CoLM) (A)

Perp. to the surface, $vsin\beta = eucos\alpha$ (Newton's law of restitution) (B)

Hence, dividing (B) by (A), $\frac{e}{tan\alpha} = tan\beta$,

so that $\tan \alpha \tan \beta = e$, as required.

[The same process could be gone through for Y, but the examiners are unlikely to want to give marks for the same material, so it is worth looking for a shortcut.]

The same reasoning applies at Y, replacing α with β and β with γ , to give:

 $\tan\beta \tan\gamma = e$, so that $\gamma = \alpha$ (given that both angles are less than 90⁰).

[look out for refinements like this – in order to get full marks!]

[The basic approach here is straightforward: create equations from the diagram and then solve them.]

 $\tan \alpha = \frac{BX}{\alpha}$ (C) $\tan\beta = \frac{CY}{XC}$ (D) $\tan \gamma (= \tan \alpha) = \frac{b}{\gamma D}$ (E) Then (C)&(D) give: BX+XC = $a \tan \alpha + \frac{CY}{\tan \beta}$ so that $2btan\beta = ae + CY$ (since $tan\alpha tan\beta = e$) (F) (E)&(F) then give: CY+YD = $2btan\beta - ae + \frac{b}{tan\alpha}$ so that $a \tan \alpha = 2be - a e \tan \alpha + b$ (again, since $t a n \alpha t a n \beta = e$) and $atan\alpha(1+e) = b(2e+1)$ and hence $\tan \alpha = \frac{(1+2e)b}{(1+e)a}$ The shot will be possible provided $0 < \tan \alpha < \frac{2b}{a}$ (G) Now, $\frac{1+2e}{1+e} > 0$ (since $e \ge 0$) and $\frac{1+2e}{1+e} < \frac{2+2e}{1+e} = 2$ Thus (G) is satisfied and the shot is possible whatever the value of e.

(iii) Fraction of KE lost = $1 - \frac{1/2.mw^2}{1/2.mu^2}$ (where m is the mass of the balls)

 $= 1 - (\frac{w}{u})^2$

Now, $v\sin\beta = eucos\alpha$ and $w\sin\alpha = evcos\beta$ (since $\gamma = \alpha$)

so that w/u = $\frac{ev\cos\beta/\sin\alpha}{v\sin\beta/(e\cos\alpha)} = \frac{e^2v\cos\beta\cos\alpha}{v\sin\beta\sin\alpha} = \frac{e^2}{tan\beta tan\alpha} = e$

and the fraction of KE lost = $1 - e^2$

[This goes to show that the last part of a question – even a STEP 2 question – is not always any harder than the earlier parts.]