STEP 2008, Paper 2, Q10 - Solution (2 pages; 2/6/18)

At X , along the surface: $\mathrm{v} \cos \beta=u \sin \alpha$ (CoLM) (A)
Perp. to the surface, $v \sin \beta=\operatorname{eucos} \alpha$ (Newton's law of restitution) (B)
Hence, dividing (B) by (A), $\frac{e}{\tan \alpha}=\tan \beta$,
so that $\tan \alpha \tan \beta=\mathrm{e}$, as required.
[The same process could be gone through for Y , but the examiners are unlikely to want to give marks for the same material, so it is worth looking for a shortcut.]

The same reasoning applies at Y , replacing α with β and β with γ, to give:
$\tan \beta \tan \gamma=\mathrm{e}$, so that $\gamma=\alpha$ (given that both angles are less than 90°).
[look out for refinements like this - in order to get full marks!]

(ii)

[The basic approach here is straightforward: create equations from the diagram and then solve them.]
$\tan \alpha=\frac{B X}{a}(\mathrm{C})$
$\tan \beta=\frac{C Y}{X C}(\mathrm{D})$
$\tan \gamma(=\tan \alpha)=\frac{b}{Y D}(\mathrm{E})$
Then $(\mathrm{C}) \&(\mathrm{D})$ give: $\mathrm{BX}+\mathrm{XC}=\mathrm{a} \tan \alpha+\frac{C Y}{\tan \beta}$
so that $2 \mathrm{~b} \tan \beta=\mathrm{ae}+\mathrm{CY}$ (since $\tan \alpha \tan \beta=\mathrm{e}$) (F)
(E) $\&(\mathrm{~F})$ then give: $\mathrm{CY}+\mathrm{YD}=2 \mathrm{~b} \tan \beta-\mathrm{ae}+\frac{b}{\tan \alpha}$
so that $\operatorname{atan} \alpha=2 \mathrm{be}-\mathrm{aetan} \alpha+\mathrm{b}$ (again, since $\tan \alpha \tan \beta=\mathrm{e}$)
and $\operatorname{atan} \alpha(1+e)=b(2 e+1)$
and hence $\tan \alpha=\frac{(1+2 e) b}{(1+e) a}$
The shot will be possible provided $0<\tan \alpha<\frac{2 b}{a}$ (G)
Now, $\frac{1+2 e}{1+e}>0($ since $\mathrm{e} \geq 0)$ and $\frac{1+2 e}{1+e}<\frac{2+2 e}{1+e}=2$
Thus (G) is satisfied and the shot is possible whatever the value of e.
(iii) Fraction of KE lost $=1-\frac{1 / 2 \cdot m w^{2}}{1 / 2 \cdot m u^{2}}$ (where m is the mass of the balls)
$=1-\left(\frac{w}{u}\right)^{2}$
Now, $\mathrm{v} \sin \beta=\mathrm{eucos} \alpha$ and $\mathrm{w} \sin \alpha=\mathrm{evcos} \beta \quad($ since $\gamma=\alpha)$
so that $\mathrm{w} / \mathrm{u}=\frac{e v \cos \beta / \sin \alpha}{v \sin \beta /(\cos \alpha)}=\frac{e^{2} v \cos \beta \cos \alpha}{v \sin \beta \sin \alpha}=\frac{e^{2}}{\tan \beta \tan \alpha}=\mathrm{e}$
and the fraction of KE lost $=1-e^{2}$
[This goes to show that the last part of a question - even a STEP 2 question - is not always any harder than the earlier parts.]

