STEP 2008, Paper 1, Q2 - Solution (2 pages; 1/6/2018)

$\frac{d t}{d x}=1+1 / 2\left(x^{2}+2 b x+c\right)^{-1 / 2}(2 \mathrm{x}+2 \mathrm{~b})$
$=1+\frac{x+b}{t-x}=\frac{t-x+x+b}{t-x}=\frac{t+b}{t-x}$
provided $\mathrm{t}-\mathrm{x} \neq 0$: the discriminant of $x^{2}+2 b x+c$ is $(2 b)^{2}-4 \mathrm{c}$
$=4\left(b^{2}-\mathrm{c}\right)<0$; hence $x^{2}+2 b x+c \neq 0$, and $\mathrm{t}-\mathrm{x}=\sqrt{x^{2}+2 b x+c}$ $\neq 0$
[The condition $b^{2}<\mathrm{c}$ should, in theory, prompt the idea of " b^{2} 4ac" (with different use of letters obviously)]

Hence $\frac{d x}{d t}=\frac{t-x}{t+b}$
$\int \frac{d x}{\sqrt{x^{2}+2 b x+c}}=\int \frac{d x}{t-x}=\int \frac{d t}{t+b}=\ln |\mathrm{t}+\mathrm{b}|+\mathrm{C}$
$=\ln \left|\mathrm{x}+\sqrt{x^{2}+2 b x+c}+\mathrm{b}\right|+\mathrm{C}(\mathrm{A})$
[Although the moduli signs are often glossed over at A Level (and questions are chosen so that the quantity is positive), this is a typical STEP refinement that needs to be allowed for.]

As $b^{2}<c, x^{2}+2 b x+c>(x+b)^{2}$,
and so $\mathrm{x}+\sqrt{x^{2}+2 b x+c}+\mathrm{b}>0$ [noting that \sqrt{x} always means the positive root]
and the integral can be written as $\ln \left(\mathrm{x}+\sqrt{x^{2}+2 b x+c}+\mathrm{b}\right)+\mathrm{C}$
If $b^{2}=\mathrm{c}$, then $\int \frac{d x}{\sqrt{x^{2}+2 b x+c}}=\int \frac{d x}{|x+b|}$ (B)
If $x+b>0$, then $(A)=\ln 2(x+b)+C=\ln 2+\ln (x+b)+C$
$=\ln |\mathrm{x}+\mathrm{b}|+C^{1}$
and $(B)=\int \frac{d x}{x+b}=\ln (\mathrm{x}+\mathrm{b})+\mathrm{C}$, which agrees with (A)
If $x+b<0$, then $(A)=\ln 0+C$, which is undefined
whereas $(\mathrm{B})=-\int \frac{d x}{x+b}=-\ln |\mathrm{x}+\mathrm{b}|+\mathrm{C}=-\ln (-(\mathrm{x}+\mathrm{b}))+\mathrm{C}$
Thus (A) does not hold if $x+b<0$.

