STEP 2008, Paper 1, Q2 - Solution (2 pages; 1/6/2018)

$$\frac{dt}{dx} = 1 + \frac{1}{2} (x^2 + 2bx + c)^{-1/2} (2x + 2b)$$
$$= 1 + \frac{x+b}{t-x} = \frac{t-x+x+b}{t-x} = \frac{t+b}{t-x}$$

provided t-x $\neq 0$: the discriminant of $x^2 + 2bx + c$ is $(2b)^2 - 4c$

= 4(b^2 -c)<0; hence $x^2 + 2bx + c \neq 0$, and t-x = $\sqrt{x^2 + 2bx + c} \neq 0$

[The condition $b^2 < c$ should, in theory, prompt the idea of " b^2 -4ac" (with different use of letters obviously)]

Hence $\frac{dx}{dt} = \frac{t-x}{t+b}$

$$\int \frac{dx}{\sqrt{x^2 + 2bx + c}} = \int \frac{dx}{t - x} = \int \frac{dt}{t + b} = \ln|t + b| + C$$
$$= \ln|x + \sqrt{x^2 + 2bx + c} + b| + C \quad (A)$$

[Although the moduli signs are often glossed over at A Level (and questions are chosen so that the quantity is positive), this is a typical STEP refinement that needs to be allowed for.]

As
$$b^2 < c$$
, $x^2 + 2bx + c > (x + b)^2$,

and so $x+\sqrt{x^2+2bx+c}+b > 0$ [noting that \sqrt{x} always means the positive root]

and the integral can be written as $\ln(x+\sqrt{x^2+2bx+c}+b)+C$

If
$$b^2 = c$$
, then $\int \frac{dx}{\sqrt{x^2 + 2bx + c}} = \int \frac{dx}{|x+b|}$ (B)

If x+b>0, then (A) = $\ln 2(x+b) + C = \ln 2 + \ln(x+b) + C$ = $\ln|x+b| + C^1$ and (B) = $\int \frac{dx}{x+b} = \ln(x+b) + C$, which agrees with (A) If x+b<0, then (A) = ln 0 + C, which is undefined whereas (B) = $-\int \frac{dx}{x+b} = -\ln|x+b| + C = -\ln(-(x+b)) + C$ Thus (A) does not hold if x+b<0.