STEP 2007, Paper 3, Q2 - Solution (2 pages; 31/5/18)
(i) $1.3 .5 .7 \ldots(2 n-1)=\frac{(2 n)!}{2.4 .6 \ldots(2 n)}=\frac{(2 n)!}{2^{n} n!}$

For $|-4 x|<1$ and hence $|x|<\frac{1}{4}$,
$(1-4 x)^{-\frac{1}{2}}$
$=1+\left(-\frac{1}{2}\right)(-4 x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)(-4 x)^{2}}{2!}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)(-4 x)^{3}}{2!}+\cdots$
$=1+(1)(2 x)+\frac{(1)(3)(2 x)^{2}}{2!}+\frac{(1)(3)(5)(2 x)^{3}}{3!}+\cdots$
$=1+\sum_{n=1}^{\infty} \frac{(2 n)!}{2^{n} n!} \frac{(2 x)^{n}}{n!}$, from (i)
$=1+\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{n}$, as required
(ii) Differentiating,
$\left(-\frac{1}{2}\right)(1-4 x)^{-\frac{3}{2}}(-4)=\sum_{n=1}^{\infty} \frac{n(2 n)!}{(n!)^{2}} x^{n-1}$
Then let $x=\frac{6}{25}\left(<\frac{6}{24}=\frac{1}{4}\right)$, so that
$2\left(1-\frac{24}{25}\right)^{-\frac{3}{2}}=\sum_{n=1}^{\infty} \frac{(2 n)!}{n!(n-1)!}\left(\frac{6}{25}\right)^{n-1}$
and hence $2(125)=\left(\frac{25}{6}\right) \sum_{n=1}^{\infty} \frac{(2 n)!}{n!(n-1)!}\left(\frac{6}{25}\right)^{n}$,
so that $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!(n-1)!}\left(\frac{6}{25}\right)^{n}=60$, as required
(iii) [The presence of $n+1$ in the denominator suggests that integration may be required.]

Integrating (i),
$\frac{(1-4 x)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\left(-\frac{1}{4}\right)=x+\left\{\sum_{n=1}^{\infty} \frac{(2 n)!}{(n+1)(n!)^{2}} x^{n+1}\right\}+c$
$x=0 \Rightarrow-\frac{1}{2}=c$
[Looking at the quantities in the 'show that' result that are being raised to the power of n :]

Let $x=\frac{2}{3^{2}}\left(<\frac{2}{8}=\frac{1}{4}\right)$,
so that $-\left(\frac{1}{2}\right)\left(1-\frac{8}{9}\right)^{\frac{1}{2}}=\frac{2}{9}+\left\{\sum_{n=1}^{\infty} \frac{(2 n)!}{(n+1)(n!)^{2}}\left(\frac{2}{3^{2}}\right)^{n+1}\right\}-\frac{1}{2}$
and hence $-\frac{1}{6}-\frac{2}{9}+\frac{1}{2}=\sum_{n=1}^{\infty} \frac{2^{n+1}(2 n)!}{3^{2 n+2}(n+1)!n!}$
giving $\frac{-3-4+9}{18}=\frac{1}{9} \sum_{n=1}^{\infty} \frac{2^{n+1}(2 n)!}{3^{2 n}(n+1)!n!}$
and hence $\sum_{n=1}^{\infty} \frac{2^{n+1}(2 n)!}{3^{2 n}(n+1)!n!}=1$, as required

