STEP 2007, Paper 1, Q4 - Solution (7 pages; 21/5/18)
[The Factor theorem could be used to demonstrate that $x+b+c$ is a factor of $f(x)=x^{3}-3 x b c+b^{3}+c^{3}$:
$f(-b-c)=-(b+c)^{3}+3(b+c) b c+b^{3}+c^{3}$
$=3(b+c) b c-\left(3 b^{2} c+3 b c^{2}\right)=0$
However, looking ahead in the question, we can see that $Q(x)$ is probably needed.]

Method 1

Suppose that $x^{3}-3 x b c+b^{3}+c^{3}=(x+b+c)\left(x^{2}+p x+q\right)$
Using the fact that $b^{3}+c^{3}=(b+c)\left(b^{2}-b c+c^{2}\right)$,
[This result, together with its companion $b^{3}-c^{3}=(b-c)\left(b^{2}+\right.$ $b c+c^{2}$), is very popular with the STEP examiners.]
we see that $q=b^{2}-b c+c^{2}$
[By observing that $x^{3}-3 x b c+b^{3}+c^{3}$ is symmetric in $x, b \& c$, we could in fact surmise at this stage that $p=-(b+c)$, to give $\left.Q(x)=x^{2}+b^{2}+c^{2}-b c-b x-c x\right]$

Equating coefficients of $x^{2}: 0=b+c+p$, giving $p=-(b+c)$
[Also, had we not used the factorisation of $b^{3}+c^{3}$,
equating coefficients of $x:-3 b c=q+(b+c) p$,
so that $\left.q=-3 b c+(b+c)^{2}=b^{2}-b c+c^{2}\right]$

Method 2

[In the official solutions, it is suggested that this sort of factorisation can be done in your head. The following table approach is perhaps a bit safer though.]

First of all, we put an x^{2} in the 1 st position in the top row, as this will generate the x^{3} needed, when multiplied by the x. The x^{3} is placed in the table and ringed, to show that it has been processed. Multiplying the x^{2} by $b \& c$ in turn produces the terms $x^{2} b$ $\& x^{2} c$. These two terms are left un-ringed for the moment (see "Stage 1" below).

$$
\text { Stage } \rightarrow x^{3}
$$

The 2nd position in the top row is then determined by the need to balance the $x^{2} b$ term (noting that no such terms are required in the target expression $x^{3}-3 x b c+b^{3}+c^{3}$). Thus we place a $-x b$ in the top row, as this gives $-x^{2} b$ when multiplied by the x. The two balancing terms can then be ringed, to show that they have been processed. Multiplying the $-x b$ by $b \& c$ in turn produces the terms $-x b^{2} \&-x b c$. Note that the $-x b c$ is part of the target expression (see "Stage 2" below).

$-x c$ then goes in the 3rd position in the top row, in order to eliminate the $x^{2} c$ (see "Stage 3" below).

$$
\text { stege 3 } \rightarrow x^{3}
$$

hen the next term to be eliminated is $-x b^{2}$, which requires a b^{2} in the top row. This generates the term b^{3}, which can be ringed, as it is needed for the target expression (see "Stage 4" below).

$$
\text { stage } 4 \rightarrow x^{3}+b^{3}
$$

The next unringed term is $-x b c$. As $-3 x b c$ is needed for the target expression, we add $a-b c$ to the top row, to enable 3 terms of $-x b c$ to be ringed, as well as the balancing terms $b^{2} c \&-$ $b^{2} c$. This leaves two un-ringed terms: $-x c^{2} \&-b c^{2}$ (see "Stage 5" below).

stage $5 \rightarrow x^{3}=3 x b c+b^{3}$

In order to eliminate the $-x c^{2}$, we add a c^{2} to the top row, and this also gets rid of the $-b c^{2}$, and gives the final c^{3} needed for the target expression (see "Stage 6" below).

Method 3

Noting that the expression $x^{3}-3 x b c+b^{3}+c^{3}$ is symmetric in $x, b \& c$, and that $Q(x)$ will need to have an x^{2} term, it follows that it must also include the terms $b^{2} \& c^{2}$. Observing then that the expansion of
$(x+b+c)\left(x^{2}+b^{2}+c^{2}\right)$ produces the unwanted term $b x^{2}$ (for example), the simplest possible adjustment needed is to add in the term $-b x$ to $Q(x)$, along with $-c x \&-b c$ (by symmetry).
$(x+b+c)\left(x^{2}+b^{2}+c^{2}-b x-c x-b c\right)$ can then be seen to expand to give $x^{3}-3 x b c+b^{3}+c^{3}$, as required.

To write $2 Q(x)$ as a sum of 3 perfect squares, we note that $(b-c)^{2}$ (for example) accounts for some of the terms in $2 Q(x)=2 x^{2}+2 b^{2}+2 c^{2}-2 b c-2 b x-2 c x$, and that (since this expression is symmetric in $x, b \& c$), we would expect to use $(x-b)^{2} \&(x-c)^{2}$ as well (noting that there is no asymmetry, since $\left.(b-c)^{2}=(c-b)^{2}\right)$
Thus $2 Q(x)=(b-c)^{2}+(x-b)^{2}+(x-c)^{2}$

For the next part, we are told that $a k^{2}+b k+c=b k^{2}+c k+a=$ 0 (A)
[As the result to be proved doesn't involve k^{2}, we could try eliminating it from the above equations.]
Hence $-k^{2}=\frac{b k+c}{a}$, and also $-k^{2}=\frac{c k+a}{b}($ since $a, b \neq 0)$
Thus $\frac{b k+c}{a}=\frac{c k+a}{b}$, and so $b^{2} k+b c=a c k+a^{2}$
and hence $\left(a c-b^{2}\right) k=b c-a^{2}$, as required.
[It is tempting now to apply the same method to derive an equation involving k^{2} (but not k). However, this would involve dividing by c, and we are not told that $c \neq 0$.]

As $a c \neq b^{2}$, the preceding result $\Rightarrow k=\frac{b c-a^{2}}{a c-b^{2}}$
Substitution into the 2 nd term of the 1 st half of (A) then gives
$a k^{2}+b\left(\frac{b c-a^{2}}{a c-b^{2}}\right)+c=0$
$\Rightarrow a k^{2}\left(a c-b^{2}\right)+b\left(b c-a^{2}\right)+c\left(a c-b^{2}\right)=0$
$\Rightarrow a k^{2}\left(a c-b^{2}\right)=b a^{2}-c a c$
$\Rightarrow\left(a c-b^{2}\right) k^{2}=a b-c^{2}$
[which is in a similar form to the result involving k]

Squaring both sides of (B) then gives
$\left(a c-b^{2}\right)^{2} k^{2}=\left(b c-a^{2}\right)^{2}$, which combined with (C) gives $\left(a c-b^{2}\right)\left(a b-c^{2}\right)=\left(b c-a^{2}\right)^{2}$, as required.
[We then have to trust that the next result follows on directly from this (rather than from the earlier results). Alternatively, we could reason (to ourselves) as follows: the final deduction (that either $k=1$ or the two equations are identical) follows from the $(x+b+c) Q(x)$ result. So, if $a^{3}-3 a b c+b^{3}+c^{3}=0$, didn't follow directly from $\left(a c-b^{2}\right)\left(a b-c^{2}\right)=\left(b c-a^{2}\right)^{2}$, no use would have been made of the latter result.]

From this result, $a^{2} b c-a c^{3}-a b^{3}+b^{2} c^{2}=b^{2} c^{2}-2 b c a^{2}+a^{4}$ and so $a^{2} b c-a c^{3}-a b^{3}+2 b c a^{2}-a^{4}=0$

As $a \neq 0, a b c-c^{3}-b^{3}+2 b c a-a^{3}=0$
or $a^{3}-3 a b c+b^{3}+c^{3}=0$, as required

So, from the earlier expression established for $Q(x)$, $(a+b+c) \cdot \frac{1}{2}\left\{(b-c)^{2}+(a-b)^{2}+(a-c)^{2}\right\}=0$

Thus either $a+b+c=0$ or $b-c=a-b=a-c=0$ (ie $a=$ $b=c$)

In the former case, the two equations both have roots 1 and k (if $k \neq 1$).

Then either $k=1$ or the two equations have the same roots: 1 and k, and are hence identical (apart from a multiplier).
[The official solutions just say that $a+b+c=0 \Rightarrow k=1$. This may not be a correct deduction.]

In the latter case, the two equations are identical.
[As you can see, there is a lot to do for this question: 7 tasks in total!]

