STEP 2007, Paper 1, Q2 - Solution (2 pages; 21/5/18)
(i) $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)}=\frac{\left(\frac{5}{6}\right)}{\left(\frac{5}{6}\right)}=1$
so that $A+B=\tan ^{-1}(1)=\frac{\pi}{4}$, since $0<A+B<\frac{\pi}{2}+\frac{\pi}{2}=\pi$
[For the next part, note that $p=2 \& q=3$ are solutions, but not necessarily the only ones.]

Let $P=\arctan \left(\frac{1}{p}\right) \& Q=\arctan \left(\frac{1}{q}\right)$
[If in doubt, create some letters and set up some equations.]
Then $P+Q=\frac{\pi}{4}$, and hence $\tan (P+Q)=1$
Also, $\tan (P+Q)=\frac{\tan P+\tan Q}{1-\operatorname{tanPtan} Q}=\frac{\frac{1}{\bar{p}}+\frac{1}{q}}{1-\left(\frac{1}{p}\right)\left(\frac{1}{q}\right)}=\frac{\left(\frac{p+q}{p q}\right)}{\left(\frac{(p-1}{p q}\right)}=\frac{p+q}{p q-1}$
Hence $\frac{p+q}{p q-1}=1$ and $p+q=p q-1$,
so that $(p-1)(q-1)=p q-(p+q)+1=[p+q+1]-$ $(p+q)+1=2$,
as required.
Then, as $p \& q \in \mathbb{Z}$ (excluding 0),
either $p-1=2 \& q-1=1$ (or v.v.)
in which case $p=3 \& q=2$ (or v.v.);
or $p-1=-2 \& q-1=-1$ (or v.v.),
in which case $p=-1 \& q=0$ (contradiction, as $p, q \neq 0$)
Thus, $p=3 \& q=2$, or v.v.
[My version of the official solution says "Since $p \& q$ are positive integers ..." (whereas the question says that $p \& q$ are non-zero
integers), and so doesn't consider the possibility of p or q being negative.]
(ii) The working in (i) did not initially depend on $p \& q$ being integers,
so, by making the substitutions $p=r \& q=\frac{s+t}{s}$,
$(p-1)(q-1)=2 \Rightarrow(r-1)\left(\frac{t}{s}\right)=2 \Rightarrow(r-1) t=2 s$
Then, as $t \& s$ have no common factors, and t is a divisor of $2 s$, either $t=2$ or $t=1$ (given that $t \in \mathbb{Z}^{+}$).

If $t=2$, then $r-1=s$, so that $r=s+1$
If $t=1$, then $r-1=2 s$, so that $r=2 s+1$
[This last step doesn't seem very demanding. The official solution goes on to give a related result, but this isn't asked for in the question. It also mentions that s must be odd if $t=2$ (since $s \& t$ have no common factors), but again this doesn't seem to be needed.]

