STEP 2007, Paper 1, Q12 - Solution (3 pages; 21/5/18)
(i) $P(1$ st is $R)=\frac{a}{N}$
$P(2 n d$ is $R)=P(1$ st is $R) P(2 n d$ is $R \mid 1$ st is $R)$
$+P(1$ st is not $R) P(2$ nd is $R \mid 1$ st is not $R)$
$=\left(\frac{a}{N}\right)\left(\frac{a-1}{N-1}\right)+\left(\frac{N-a}{N}\right)\left(\frac{a}{N-1}\right)$
$=\frac{a}{N(N-1)}(a-1+N-a)=\frac{a}{N}=P(1$ st is $R)$, as required
[We could also argue along the following lines: "Drawing one sweet and then another is no different from putting both hands into the bag and drawing a sweet with each hand, but designating the right-hand sweet as the 1st drawn. But alternatively we could have designated the right-hand sweet as the 2nd drawn."
However, it is hard to be sure that a 'convincing' argument has been made (especially if it doesn't appear in the examiners' mark scheme), so the calculation is probably safer.]
(ii) The examiners' report strongly recommends the use of a tree diagram. Alternatively, you can just break the problem down into separate cases, as below.

$$
P(1 s t ~ i s ~ R)=p\left(\frac{a}{N}\right)+q\left(\frac{b}{N}\right)=\frac{p a+q b}{N}
$$

Case 1: If 1st coin is H

$P(2 n d[$ sweet $]$ is $R)=P(1$ st is $R) P(2 n d$ is $R \mid 1$ st is $R)$
$+P(1$ st is not $R) P(2 n d$ is $R \mid 1$ st is not $R)$

$$
\begin{aligned}
& =\frac{a}{N}\left\{p\left(\frac{a-1}{N-1}\right)+q\left(\frac{b+1}{N+1}\right)\right\}+\frac{(N-a)}{N}\left\{p\left(\frac{a}{N-1}\right)+q\left(\frac{b}{N+1}\right)\right\} \\
& =\frac{1}{N(N-1)(N+1)}\{\operatorname{ap}(a-1)(N+1)+a q(b+1)(N-1)
\end{aligned}
$$

$$
\begin{aligned}
& +(N-a) p a(N+1)+(N-a) q b(N-1)\} \\
& =\frac{1}{N(N-1)(N+1)}\{a p(N+1)[a-1+N-a] \\
& +q(N-1)[a b+a+N b-a b]\} \\
& =\frac{1}{N(N-1)(N+1)}\{a p(N+1)(N-1)+q(N-1)(a+N b)\} \\
& =\frac{1}{N(N+1)}\{a p N+a p+q a+q N b\} \\
& =\frac{1}{N(N+1)}\{N(a p+q b)+a\}, \text { since } p+q=1
\end{aligned}
$$

Case 2: If 1st coin is T

The situation is the same as before, with the roles of $a \& b$ exchanged, and also the roles of $p \& q$.

Thus $P(2 n d[$ sweet $]$ is $R)=\frac{1}{N(N+1)}\{N(b q+p a)+b\}$

Finally, $P(2$ nd is $R)=P(1$ st coin is $H) P(2 n d$ is $R \mid 1$ st coin is $H)$ $+P(1$ st coin is $T) P(2 n d$ is $R \mid 1$ st coin is $T)$

$$
\begin{aligned}
& =\frac{p}{N(N+1)}\{N(a p+q b)+a\}+\frac{q}{N(N+1)}\{N(b q+p a)+b\} \\
& =\frac{1}{N(N+1)}\{p N(a p+q b)+p a+q N(b q+p a)+q b\} \\
& =\frac{1}{N(N+1)}\{(p N+q N)(a p+q b)+p a+q b\} \\
& =\frac{1}{N(N+1)}\{N(a p+q b)+p a+q b\}, \text { as } p+q=1 \\
& =\frac{1}{N(N+1)}\{(N+1)(a p+q b)\}
\end{aligned}
$$

$=\frac{p a+q b}{N}=P(1$ st is $r e d)$, as required

