STEP 2006, Paper 3, Q4 - Solution (2 pages; 19/5/18)

Let
$$x = y$$
, to give $2f(x) \equiv f(2x)$ (1)

Let u = 2x. Then, differentiating both sides wrt x:

$$2f'(x) = \frac{d}{du}f(u).\frac{du}{dx} = f'(u)(2) = 2f'(2x)$$
; ie $f'(x) = f'(2x)$

Then
$$f''(x) = \frac{d}{dx}f'(2x) = \frac{d}{du}f'(u).\frac{du}{dx} = f''(u)(2) = 2f''(2x)$$

So f''(0) = 2f''(0), and hence f''(0) = 0, as required.

From
$$f''(x) = 2f''(2x)$$
, $f^{(3)}(x) = 2\frac{d}{du}f''(u)\frac{du}{dx} = 4f^{(3)}(2x)$,

and so on for higher derivatives, so that $f^{(n)}(0) = 0$ for $n \ge 2$

Also from (1), $2f(0) \equiv f(0)$, so that f(0) = 0 as well.

The Maclaurin series for f(x) is

$$f(0) + xf'(0) + \frac{x^2f''(0)}{2!} + \cdots$$
, so that in this case

$$f(x) = xf'(0) = ax$$
, say, where a is a constant for a given $f(x)$

(i)
$$g(x)g(y) = g(x + y) \Rightarrow lng(x) + lng(y) = lng(x + y)$$

ie
$$G(x) + G(y) = G(x + y) \Rightarrow G(x) = ax$$

ie
$$lng(x) = ax$$
, so that $g(x) = e^{ax}$

(ii)
$$h(x) + h(y) = h(xy) \Rightarrow h(e^u) + h(e^v) = h(e^u e^v) = h(e^{u+v})$$

$$\Rightarrow H(u) + H(v) = H(u + v) \Rightarrow H(x) = ax$$

ie
$$h(e^x) = ax$$

Let
$$z = e^x$$
; then $h(z) = alnz$

(iii) The form of $z = \frac{x+y}{1-xy}$ suggests letting $x = tan\theta \& y = tan\phi$, when $z = tan(\theta + \phi)$

Then t(x) + t(y) = t(z) [with t presumably hinting at tan!]

$$\Rightarrow t(tan\theta) + t(tan\phi) = t(tan(\theta + \phi))$$

Let
$$T(x) = t(tanx)$$

so that
$$T(\theta) + T(\phi) = T(\theta + \phi)$$

$$\Rightarrow T(x) = ax$$
; ie $t(tanx) = ax$

Let u = tanx; then t(u) = a(arctanu)