STEP 2006, Paper 3, Q13 - Solution (3 pages; 20/5/18)

Fis. 1

Case 1: P \& Q both lie on the arc
Case 2: one of them lies on the arc \& the other lies on the diameter (The case where they both lie on the diameter gives $A=0$)

Given that Case 1 applies, the joint pdf of $\theta \& \phi$ (the angles made by $\mathrm{P} \& \mathrm{Q}$ respectively, as in Fig. 1, is that of a 2D uniform distribution with each variable ranging from 0 to π, so that $f(\theta, \phi)=\frac{1}{\pi^{2}}$

As $\theta<\phi$ half of the time, and this scenario contributes half of $E(A)$ for Case 1, we can carry out the integration on the basis that $\theta<\phi$, and then double the result.
$A=\frac{1}{2}(1)(1) \sin (\phi-\theta)$, so that the contribution to $\mathrm{E}(\mathrm{A})$ for Case 1 is

$$
\begin{aligned}
& 2 \int_{\phi=0}^{\pi} \int_{\theta=0}^{\phi} \frac{1}{\pi^{2}}\left(\frac{1}{2}\right) \sin (\phi-\theta) d \theta d \phi=\frac{1}{\pi^{2}} \int_{\phi=0}^{\pi}[\cos (\phi-\theta)]_{\theta=0}^{\phi} d \phi \\
& =\frac{1}{\pi^{2}} \int_{\phi=0}^{\pi} 1-\cos \phi d \phi=\frac{1}{\pi^{2}}[\phi-\sin \phi]_{0}^{\pi}=\frac{1}{\pi^{2}}(\pi)=\frac{1}{\pi}
\end{aligned}
$$

[See below for alternative approach.]

Given that Case 2 applies, consider separately the 4 sub-cases:
(i) P on the arc, Q to the left of R
(ii) P on the arc, Q to the right of R
(iii) Q on the arc, P to the left of R
(iv) Q on the arc, P to the right of R

Given that (i) applies (see Fig. 2), $A=\frac{1}{2}(1)(x) \sin \theta$
and the joint pdf will be $\frac{1}{\pi}(1)$, as x is uniform over 0 to 1
The contribution to $E(A)$ from (i) is then
$\int_{\theta=0}^{\pi} \int_{x=0}^{1} \frac{1}{\pi}\left(\frac{1}{2} x \sin \theta\right) d x d \theta=\frac{1}{2 \pi} \int_{\theta=0}^{\pi}\left[\frac{1}{2} x^{2}\right]{ }_{0}^{1} \sin \theta d \theta$
$=\frac{1}{4 \pi} \int_{0}^{\pi} \sin \theta d \theta=\frac{1}{4 \pi}[-\cos \theta]_{0}^{\pi}=\frac{1}{4 \pi}(1-(-1))=\frac{1}{2 \pi}$
For (ii), $A=\frac{1}{2}(1)(x) \sin (\pi-\theta)=\frac{1}{2}(1)(x) \sin (\theta)$, giving the same contribution to $\mathrm{E}(\mathrm{A})$.

Similarly for (iii) \& (iv), so that the total contribution to $E(A)$ for Case 2 is $\frac{4}{2 \pi}=\frac{2}{\pi}$

Now $\mathrm{P}($ Case 1$)=\left(\frac{\pi}{\pi+2}\right)^{2}$ (considering the lengths of the arc and the diameter) and
$\mathrm{P}($ each of the 4 sub-cases for Case 2$)=\left(\frac{\pi}{\pi+2}\right)\left(\frac{1}{\pi+2}\right)=\frac{\pi}{(\pi+2)^{2}}$,
so that the overall $\mathrm{E}(\mathrm{A})=\left(\frac{\pi}{\pi+2}\right)^{2}\left(\frac{1}{\pi}\right)+\frac{\pi}{(\pi+2)^{2}}\left(\frac{2}{\pi}\right)$
$=\frac{\pi+2}{(\pi+2)^{2}}=\frac{1}{\pi+2}=(2+\pi)^{-1}$, as required.

Alternative approach for Case 1: Following the method in the H\&A, we can suppose for the moment that P lies in the interval $(\theta, \theta+\delta \theta)$, whilst Q lies in $(\phi, \phi+\delta \phi)$. Given this situation, $A=\frac{1}{2} \sin (\theta-\phi)$ if $\phi<\theta$ and $A=\frac{1}{2} \sin (\phi-\theta)$ if $\phi>\theta$
[In the $H \& A$, for case (i) the area is stated to be $\frac{1}{2}|r| \sin \theta$, but this seems to be mis-copied from case (ii).]

Given that P lies in $(\theta, \theta+\delta \theta)$,
$E(A)=\int_{0}^{\theta} \frac{1}{2} \sin (\theta-\phi)\left(\frac{1}{\pi}\right) d \phi+\int_{\theta}^{\pi} \frac{1}{2} \sin (\phi-\theta)\left(\frac{1}{\pi}\right) d \phi$
(since Q is uniformly distributed over $(0, \pi)$)
$=\frac{1}{2 \pi}[\cos (\theta-\phi)]_{\phi} \stackrel{\theta}{=0}+\frac{1}{2 \pi}[-\cos (\phi-\theta)] \stackrel{\pi}{=} \theta$
$=\frac{1}{2 \pi}(1-\cos \theta)+\frac{1}{2 \pi}(-\cos (\pi-\theta)+1)=\frac{1}{\pi}$,
as $\cos (\pi-\theta)=-\cos \theta$
As $E(A)$ is independent of θ, its value is therefore $\frac{1}{\pi}$, given that Case 1 applies.

