STEP 2006, P2, Q2 - Solution (3 pages; 16/5/18)
$e=e^{1}=1+1+\frac{1}{2}+\frac{1}{6}+\cdots>2 \frac{2}{3}=\frac{8}{3}$, as required
To show that $n!>2^{n}$ for $n \geq 4$:
Proof by induction
When $n=4, n!=24>16=2^{n}$. Thus the result is true for $n=4$.
Assume that the result is true for $n=k$, so that $k!>2^{k}$
Then $\frac{(k+1)!}{2^{k+1}}=\frac{(k+1) k!}{2\left(2^{k}\right)}>\frac{k+1}{2}$, since $k!>2^{k}$
As $\frac{k+1}{2}>1$ when $k \geq 4$, it follows that $\frac{(k+1)!}{2^{k+1}}>1$
and hence $(k+1)!>2^{k+1}$
So if the result is true for $n=k$, it is true for $n=k+1$.
As the result is true for $n=4$, it is therefore true for $n=5,6, \ldots$, and hence, by the principle of induction, for all integer $n \geq 4$.

Then $e<1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\cdots$
$\frac{8}{3}+\frac{1}{16} \cdot \frac{1}{1-1 / 2}$ (sum of an infinite geometric series)
$=\frac{8}{3}+\frac{1}{8}=\frac{67}{24}$
$y=3 e^{2 x}+14 \ln \left(\frac{4}{3}-x\right)$
$\frac{d y}{d x}=6 e^{2 x}-\frac{14}{\frac{4}{3}-x}$
At a stationary point, $\frac{d y}{d x}=0$
so that $6 e^{2 x}-\frac{42}{4-3 x}=0$
$x=\frac{1}{2} \Rightarrow$ LHS of $(1)=6 e-\frac{42}{4-\frac{3}{2}}=6\left(e-\frac{7}{\left(\frac{5}{2}\right)}\right)=6\left(e-\frac{14}{5}\right)$
[note at this point that $e=2.718 \ldots<2.8$]
$<6\left(\frac{67}{24}-\frac{14}{5}\right)=6 \frac{(335-240-96)}{120}=\frac{(335-336)}{20}<0$
$x=1 \Rightarrow$ LHS of $(1)=6 e^{2}-42>6\left(\frac{64}{9}-7\right)=\frac{6}{9}(64-63)>0$
Thus there is a root of (1) between $1 / 2$ and 1 (since $\frac{d y}{d x}$ is continuous in this interval), and hence a stationary point occurs between $1 / 2$ and 1 .

Also, as $\frac{d y}{d x}<0$ to the left of the stationary point, and $\frac{d y}{d x}>0$ to the right of the stationary point, we can conclude that the stationary point is a minimum turning point.
[Strictly speaking, there could be more than one stationary point between $1 / 2$ and 1 , but one of them must be a minimum in order for $\frac{d y}{d x}$ to change from being -ve to being +ve]
$x=0 \Rightarrow y=3+14 \ln (4 / 3)>3$
As $x \rightarrow-\infty, y \rightarrow 0+\infty$
As $x \rightarrow \frac{4}{3}, y \rightarrow 3 e^{8 / 3}-\infty$
Hence there must be a maximum turning point between 1 and 4/3.

