STEP 2006, P2, Q12 - Solution (3 pages; 17/5/18)

(i) [It looks as though an answer could be worked out fairly easily by considering relative frequencies, but the question says "using a Binomial model": is this an instruction to do the question by a specified method, or just reassurance that you are allowed to make a simplifying assumption? As is usually the case, the correct approach involves something simple: the key idea is conditional probability, with each bowler's own number of wickets having a Binomial distribution.]

Let $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ be the probability of bowlers $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ obtaining a, b \& c wickets respectively.

Then Prob(wicket is obtained by $\mathrm{A} \mid 1$ wicket is obtained)
$=\frac{P(1,0,0)}{P(1,0,0)+P(0,1,0)+P(0,0,1)}$
Now $P(1,0,0)=\left\{30 \cdot \frac{1}{36} \cdot\left(\frac{35}{36}\right)^{29}\right\} \cdot\left(\frac{24}{25}\right)^{30} \cdot\left(\frac{40}{41}\right)^{30}$
[If this was an A Level question, we would straightaway reject this approach as too complicated - given that calculators are not allowed - having established that statistical tables are no help here. However, being STEP we need to persevere a bit, to see if any cancelling is going to occur. Rather worryingly though, we are not being asked for an approximate answer. However, looking ahead we can see that the quantity
$\left(\frac{35}{36}\right)^{29} \cdot\left(\frac{24}{25}\right)^{29} \cdot\left(\frac{40}{41}\right)^{29}$ is in fact going to cancel from top \& bottom.]
and similarly for $\mathrm{P}(0,1,0)$ and $\mathrm{P}(0,0,1)$, giving:
30. $\frac{1}{36} \cdot\left(\frac{35}{36}\right)^{29} \cdot\left(\frac{24}{25}\right)^{30} \cdot\left(\frac{40}{41}\right)^{30}$
$\div\left\{30 \cdot \frac{1}{36} \cdot\left(\frac{35}{36}\right)^{29} \cdot\left(\frac{24}{25}\right)^{30} \cdot\left(\frac{40}{41}\right)^{30}+\left(\frac{35}{36}\right)^{30} \cdot 30 \cdot \frac{1}{25}\left(\frac{24}{25}\right)^{29}\right.$. $\left(\frac{40}{41}\right)^{30}$

$$
\left.+\left(\frac{35}{36}\right)^{30} \cdot\left(\frac{24}{25}\right)^{30} \cdot 30 \cdot \frac{1}{41}\left(\frac{40}{41}\right)^{29}\right\}
$$

Cancelling $30\left(\frac{35}{36}\right)^{29} \cdot\left(\frac{24}{25}\right)^{29} \cdot\left(\frac{40}{41}\right)^{29}$ from top \& bottom gives:

$$
\frac{1}{36} \cdot \frac{24}{25} \cdot \frac{40}{41}
$$

$\overline{\frac{1}{36} \cdot \frac{24}{25} \cdot \frac{40}{41}+\frac{35}{36} \cdot \frac{1}{25} \cdot \frac{40}{41}+\frac{35}{36} \cdot \frac{24}{25} \cdot \frac{1}{41}}$
$=\frac{24.40}{24.40+35.40+35.24}=\frac{24}{24+35+21}=\frac{24}{80}=0.3$
(ii) Expected number of wickets $=30\left(\frac{1}{36}+\frac{1}{25}+\frac{1}{41}\right)$
[Given that the fractions in the brackets are supposed to average $1 / 30$ approximately, the approximation is going to have to be fairly rough.]
$\approx 30\left(\frac{1}{30}+\frac{1}{25}+\frac{1}{45}\right)=1+30 \cdot \frac{70}{25.45}=1+\frac{28}{15} \approx 3$
[The e^{3} hints at the Poisson distribution, which features e^{-3}.]

The incidences of obtaining a wicket can be counted as rare [equivalent to n being relatively large, with p being relatively small], (approximately) random and independent of one another, and with (approximately) constant probability.

Thus the number of wickets in a match, X , can be treated as having an approximate Poisson distribution, with parameter equal to the expected number of wickets, 3 .

Then $\operatorname{Prob}(X \geq 5)=1-\{\operatorname{Prob}(0)+\operatorname{Prob}(1)+\ldots+\operatorname{Prob}(4)\}$
$=1-e^{-3}\left(1+3+\frac{9}{2}+\frac{27}{6}+\frac{81}{24}\right) \approx 1-\frac{1}{20}\left(13+\frac{27}{8}\right)$
$=1-\frac{16.375}{20}=1-0.81875 \approx 1 / 5$, as required

