STEP 2006, Paper 1, Q9 - Solution (2 pages; 14/5/18)

Before the string is cut:

Noting that the required time is to be expressed in terms of y :
$(6-y) g-T_{1}=(6-y) a$ (1) ($x \mathrm{~kg}$ mass $)$
$T_{1}-T_{2}=4 a$
(2) (4 kg mass)
$T_{2}-y g=y a$
(3) (y kg mass)

Then (to find $a),(1) \&(3) \Rightarrow T_{1}-T_{2}=(6-y)(g-a)-y(a+g)$
Then, from (2), $4 a=a(y-6-y)+6 g-y g-y g$
so that $10 a=g(6-2 y) \& a=\frac{g(3-y)}{5}$

If t_{1} is the time until the string is cut, then the suvat equation $s=u t+\frac{1}{2} a t^{2} \quad$ gives $d=\frac{1}{2}\left(\frac{g(3-y)}{5}\right) t_{1}{ }^{2}$, so that $t_{1}{ }^{2}=\frac{10 d}{g(3-y)}$ (4) and the speed of the 4 kg mass when the string is cut is (from " $v=u+a t$ ") $\left(\frac{g(3-y)}{5}\right) t_{1}$

After the string is cut:

$$
\begin{aligned}
& \text { a } \rightarrow T_{3} \\
& y g-T_{3}=y a^{\prime} \& T_{3}=4 a^{\prime}, \text { so that } y g-4 a^{\prime}=y a^{\prime} \\
& \text { and hence } a^{\prime}=\frac{y g}{y+4}
\end{aligned}
$$

Suppose that the block takes a further time t_{2} to come to rest. Then (from " $v=u+a t ") 0=-\left(\frac{g(3-y)}{5}\right) t_{1}+\frac{y g t_{2}}{y+4} \quad$ (from (5)) so that $t_{2}=\frac{(3-y)(y+4) t_{1}}{5 y}$
and hence, from (4), the required time

$$
\begin{aligned}
& =t_{1}+t_{2}=\sqrt{\frac{10 d}{g(3-y)}}\left\{1+\frac{(3-y)(y+4)}{5 y}\right\} \\
& =\sqrt{\frac{d}{5 g}} f(y)
\end{aligned}
$$

where $f(y)=\sqrt{\frac{50}{3-y}}+\sqrt{\frac{50}{3-y}}\left[\frac{(3-y)(y+4)}{5 y}\right]$

$$
\begin{aligned}
& =\sqrt{\frac{100}{6-2 y}}+\sqrt{\frac{100}{6-2 y}}\left[\frac{(6-2 y)\left(1+\frac{4}{y}\right)}{10}\right] \\
& =\frac{10}{\sqrt{6-2 y}}+\left(1+\frac{4}{y}\right) \sqrt{6-2 y}, \text { as required }
\end{aligned}
$$

$$
f^{\prime}(y)=10\left(-\frac{1}{2}\right)(6-2 y)^{-\frac{3}{2}}(-2)
$$

$$
+4(-1) y^{-2} \sqrt{6-2 y}+\left(1+\frac{4}{y}\right)\left(\frac{1}{2}\right)(6-2 y)^{-\frac{1}{2}}(-2)
$$

$$
=y^{-2}(6-2 y)^{-\frac{3}{2}}\left\{10 y^{2}-4(6-2 y)^{2}-\left(y^{2}+4 y\right)(6-2 y)\right\}
$$

$$
\text { Then } f^{\prime}(y)=0 \Rightarrow 10 y^{2}-4(6-2 y)^{2}-\left(y^{2}+4 y\right)(6-2 y)=0
$$

$$
\Rightarrow 2 y^{3}+y^{2}(10-16-6+8)+y(96-24)-144=0
$$

$$
\Rightarrow 2 y^{3}-4 y^{2}+72 y-144=0
$$

$$
\Rightarrow g(y)[s a y]=y^{3}-2 y^{2}+36 y-72=0
$$

Noting that $g(2)=0$,

$$
g(y)=(y-2)\left(y^{2}+36\right)
$$

so that $y=2$ is the only solution.

